It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Detection of fracture properties can be implemented using azimuth-dependent seismic inversion for optimal model parameters in time or frequency domain. Considering the respective potentials for sensitivities of inversion resolution and anti-noise performance in time and frequency domain, we propose a more robust azimuth-dependent seismic inversion method to achieve fracture detection by combining the Bayesian inference and joint time–frequency-domain inversion theory. Both Cauchy Sparse and low-frequency constraint regularizations are introduced to reduce multi-solvability of model space and improve inversion reliability of model parameters. Synthetic data examples demonstrate that the frequency bandwidth of inversion result is almost the same for time, frequency and joint time–frequency domain inversion in seismic dominant frequency band using the noise-free data, but the frequency bandwidth in joint time–frequency domain is larger than that in time and frequency domains using low- signal-to-noise-ratio (SNR) data. The results of cross-correlation coefficients validate that the joint time–frequency-domain inversion retains both the excellent characteristics of high resolution in frequency-domain inversion and the advantage of strong anti-noise ability in time-domain inversion. A field data example further demonstrates that our proposed inversion approach in joint time–frequency domain may provide a more stable technique for fracture detection in fractured reservoirs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Central South University, School of Geoscience and Info-Physics, Changsha, China (GRID:grid.216417.7) (ISNI:0000 0001 0379 7164)