Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

While it is relatively straightforward to automate the processing of lidar signals, it is more difficult to choose periods of “good” measurements to process. Groups use various ad hoc procedures involving either very simple (e.g. signal-to-noise ratio) or more complex procedurese.g. to perform a task that is easy to train humans to perform but is time-consuming. Here, we use machine learning techniques to train the machine to sort the measurements before processing. The presented method is generic and can be applied to most lidars. We test the techniques using measurements from the Purple Crow Lidar (PCL) system located in London, Canada. The PCL has over 200 000 raw profiles in Rayleigh and Raman channels available for classification. We classify raw (level-0) lidar measurements as “clear” sky profiles with strong lidar returns, “bad” profiles, and profiles which are significantly influenced by clouds or aerosol loads. We examined different supervised machine learning algorithms including the random forest, the support vector machine, and the gradient boosting trees, all of which can successfully classify profiles. The algorithms were trained using about 1500 profiles for each PCL channel, selected randomly from different nights of measurements in different years. The success rate of identification for all the channels is above 95 %. We also used the t-distributed stochastic embedding (t-SNE) method, which is an unsupervised algorithm, to cluster our lidar profiles. Because the t-SNE is a data-driven method in which no labelling of the training set is needed, it is an attractive algorithm to find anomalies in lidar profiles. The method has been tested on several nights of measurements from the PCL measurements. The t-SNE can successfully cluster the PCL data profiles into meaningful categories. To demonstrate the use of the technique, we have used the algorithm to identify stratospheric aerosol layers due to wildfires.

Details

Title
Classification of lidar measurements using supervised and unsupervised machine learning methods
Author
Ghazal Farhani 1 ; Sica, Robert J 1   VIAFID ORCID Logo  ; Daley, Mark Joseph 2 

 Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 3K7, Canada 
 Department of Computer Science, The Vector Institute for Artificial Intelligence, The University of Western Ontario, 1151 Richmond St., London, ON, N6A 3K7, Canada 
Pages
391-402
Publication year
2021
Publication date
2021
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2478436239
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.