It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Circular RNAs (circRNAs) are widely expressed in cells and tissues and are involved in biological processes and human diseases. Recent studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which is considered an important aspect for investigating the function of circRNAs.
Results
In this study, we design a slight variant of the capsule network, called circRB, to identify the sequence specificities of circRNAs binding to RBPs. In this model, the sequence features of circRNAs are extracted by convolution operations, and then, two dynamic routing algorithms in a capsule network are employed to discriminate between different binding sites by analysing the convolution features of binding sites. The experimental results show that the circRB method outperforms the existing computational methods. Afterwards, the trained models are applied to detect the sequence motifs on the seven circRNA-RBP bound sequence datasets and matched to known human RNA motifs. Some motifs on circular RNAs overlap with those on linear RNAs. Finally, we also predict binding sites on the reported full-length sequences of circRNAs interacting with RBPs, attempting to assist current studies. We hope that our model will contribute to better understanding the mechanisms of the interactions between RBPs and circRNAs.
Conclusion
In view of the poor studies about the sequence specificities of circRNA-binding proteins, we designed a classification framework called circRB based on the capsule network. The results show that the circRB method is an effective method, and it achieves higher prediction accuracy than other methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer