Full text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a two dimensional quaternion valued singular spectrum analysis based method for enhancing the hyperspectral image. Here, the enhancement is for performing the object recognition, but neither for improving the visual quality nor suppressing the artifacts. In particular, the two dimensional quaternion valued singular spectrum analysis components are selected in such a way that the ratio of the interclass separation to the intraclass separation of the pixel vectors is maximized. Next, the support vector machine is employed for performing the object recognition. Compared to the conventional two dimensional real valued singular spectrum analysis based method where only the pixels in a color plane is exploited, the two dimensional quaternion valued singular spectrum analysis based method fuses four color planes together for performing the enhancement. Hence, both the spatial information among the pixels in the same color plane and the spectral information among various color planes are exploited. The computer numerical simulation results show that the overall classification accuracy based on our proposed method is higher than the two dimensional real valued singular spectrum analysis based method, the three dimensional singular spectrum analysis based method, the multivariate two dimensional singular spectrum analysis based method, the median filtering based method, the principal component analysis based method, the Tucker decomposition based method and the hybrid spectral convolutional neural network (hybrid SN) based method.

Details

Title
Hyperspectral Image Enhancement by Two Dimensional Quaternion Valued Singular Spectrum Analysis for Object Recognition
First page
405
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2483550266
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.