It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background and Aim: Nitrate (NO3–) reduces enteric methane emissions and could be a source of non-protein nitrogen in ruminant feeds. Nonetheless, it has a potential toxic effect that could compromise animal health and production. The purpose of this study was to determine the effects of progressive inclusion of NO3– in the diet on the hematological, biochemical, and blood gases parameters, in turn, the effects on feed intake and live weight gain (LWG) in Holstein calves.
Materials and Methods: Eighteen Holstein heifers and steers (nine animals/treatment) were maintained in individual pens for 45 days. Animals were randomly allocated to either a control or nitrate diet (ND) (containing 15 g of NO3–/kg of dry matter [DM]). The biochemical parameters and blood gases were analyzed only in the NO3– group on days: -1, 1, 7, 13, 19, and 25 corresponding to 0, 20, 40, 60, 80, and 100% of the total inclusion of NO3– in the diet, respectively. In addition, DM intake (DMI) and LWG were evaluated among dietary treatments.
Results: Feeding the ND did not influence DMI or LWG (p>0.05). Methemoglobin (MetHb) and deoxyhemoglobin increased according to the NO3– concentrations in the diet (p<0.05), while an opposite effect was observed for oxyhemoglobin and carboxyhemoglobin (p<0.05). Hematocrit levels decreased (p<0.05), while albumin, alanine aminotransferase, and gamma-glutamyl transpeptidase concentrations were not modified (p>0.05). However, glucose, urea, aspartate aminotransferase (AST), and retinol concentrations increased (p<0.05) according to the NO3– concentrations in the diet.
Conclusion: This study confirmed that the progressive inclusion of 123 g of NO3–/animal/day in the diet could be safe without affecting DMI and LWG of Holstein calves. In turn, a dose-response effect of the MetHb, glucose, urea, AST, and retinol was observed, but these values did not exceed reference values. These results highlighted the importance of using a scheme of progressive inclusion of NO3– in the diet of calves to reduce the risks of NO3– toxicity.
------------
------------
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer