It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Stem cells offer the basis for the promotion of robust new therapeutic approaches for a variety of human disorders. There are still many limitations to be overcome before clinical therapeutic application, including a better understanding of the mechanism by which stem cell therapies may lead to enhanced recovery. In vitro investigations are necessary to dissect the mechanisms involved and to support the potential development in stem cell‐based therapies. In spite of growing interest in human amniotic fluid stem cells, not much is known about the characteristics of their secretome and regarding the potential neuroprotective mechanism in different pathologies, including stroke. To get more insight on amniotic fluid cells therapeutic potential, signal transduction pathways activated by human amniotic fluid stem cells (hAFSCs)‐derived secretome in a stroke in vitro model (ischemia/reperfusion [I/R] model) were investigated by Western blot. Moreover, miRNA expression in the exosomal fraction of the conditioned medium was analyzed. hAFSCs‐derived secretome was able to activate pro‐survival and anti‐apoptotic pathways. MicroRNA analysis in the exosomal component revealed a panel of 16 overexpressed miRNAs involved in the regulation of coherent signaling pathways. In particular, the pathways of relevance in ischemia/reperfusion, such as neurotrophin signaling, and those related to neuroprotection and neuronal cell death, were analyzed. The results obtained strongly point toward the neuroprotective effects of the hAFSCs‐conditioned medium in the in vitro stroke model here analyzed. This can be achieved by the modulation and activation of pro‐survival processes, at least in part, due to the activity of secreted miRNAs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
2 Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti‐Pescara, Italy; Center for Advanced Studies and Technology (CAST), ‘G. d'Annunzio’ University, Chieti‐Pescara, Italy
3 Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, L'Aquila, Italy
4 Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, USA
5 Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Centre for Biotechnology, Temple University, Philadelphia, Pennsylvania, USA