It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A semantic segmentation method based on the fully convolutional network is proposed to detect the buffer layer defect in high voltage cable automatically. One hundred seventy-seven high-resolution X-ray images of cables are collected. FCN-8s and VGG16 backbone are adopted. The results indicated that the FCN-8s achieves the mIoU to 0.67 on the test set, proving to be an efficient way to detect the buffer layer defects.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer