It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A number of physical processes in laser-plasma interaction can be described with the two-fluid plasma model. We report on a solver for the three-dimensional two-fluid plasma model equations. This solver is particularly suited for simulating the interaction between short laser pulses with plasmas. The fluid solver relies on two-step Lax–Wendroff split with a fourth-order Runge–Kutta scheme, and we use the Pseudo-Spectral Analytical Time-Domain (PSATD) method to solve Maxwell’s curl equations. Overall, this method is only based on finite difference schemes and fast Fourier transforms and does not require any grid staggering. The Pseudo-Spectral Analytical Time-Domain method removes the numerical dispersion for transverse electromagnetic wave propagation in the absence of current that is conventionally observed for other Maxwell solvers. The full algorithm is validated by conservation of energy and momentum when an electromagnetic pulse is launched onto a plasma ramp and by quantitative agreement with wave conversion of p-polarized electromagnetic wave onto a plasma ramp.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Université Bourgogne Franche-Comté, Institut FEMTO-ST CNRS UMR 6174, Besançon, France (GRID:grid.493090.7) (ISNI:0000 0004 4910 6615)