Abstract

We simultaneously revisited the Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) with a comprehensive data-analytics strategy. Here, the combination of pattern-analysis algorithms and extensive data resources (n = 266 patients aged 7–49 years) allowed identifying coherent clinical constellations in and across ADI-R and ADOS assessments widespread in clinical practice. Our clustering approach revealed low- and high-severity patient groups, as well as a group scoring high only in the ADI-R domains, providing quantitative contours for the widely assumed autism subtypes. Sparse regression approaches uncovered the most clinically predictive questionnaire domains. The social and communication domains of the ADI-R showed convincing performance to predict the patients’ symptom severity. Finally, we explored the relative importance of each of the ADI-R and ADOS domains conditioning on age, sex, and fluid IQ in our sample. The collective results suggest that (i) identifying autism subtypes and severity for a given individual may be most manifested in the ADI-R social and communication domains, (ii) the ADI-R might be a more appropriate tool to accurately capture symptom severity, and (iii) the ADOS domains were more relevant than the ADI-R domains to capture sex differences.

Details

Title
Patterns of autism symptoms: hidden structure in the ADOS and ADI-R instruments
Author
Lefort-Besnard Jérémy 1   VIAFID ORCID Logo  ; Vogeley Kai 2 ; Schilbach Leonhard 3 ; Varoquaux Gaël 4 ; Thirion Bertrand 4   VIAFID ORCID Logo  ; Dumas Guillaume 5 ; Bzdok Danilo 6   VIAFID ORCID Logo 

 RWTH Aachen University, Department of Psychiatry, Psychotherapy, and Psychosomatics, Aachen, Germany (GRID:grid.1957.a) (ISNI:0000 0001 0728 696X); Jülich Aachen Research Alliance (JARA)—Translational Brain Medicine, Aachen, Germany (GRID:grid.494742.8) 
 Max-Planck Institute of Psychiatry, Munich, Germany (GRID:grid.419548.5) (ISNI:0000 0000 9497 5095) 
 University of Cologne, Department of Psychiatry and Psychotherapy, Cologne, Germany (GRID:grid.6190.e) (ISNI:0000 0000 8580 3777) 
 Parietal Team, INRIA, CEA, University Paris-Saclay, Gif-sur-Yvette, France (GRID:grid.457334.2) 
 Human Genetics and Cognitive Functions University Paris Diderot, Sorbonne Paris Cité, Paris, France (GRID:grid.469994.f) (ISNI:0000 0004 1788 6194); CNRS UMR3571 Genes, Synapses and Cognition, Institut Pasteur, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535); Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535) 
 RWTH Aachen University, Department of Psychiatry, Psychotherapy, and Psychosomatics, Aachen, Germany (GRID:grid.1957.a) (ISNI:0000 0001 0728 696X); Jülich Aachen Research Alliance (JARA)—Translational Brain Medicine, Aachen, Germany (GRID:grid.494742.8); Parietal Team, INRIA, CEA, University Paris-Saclay, Gif-sur-Yvette, France (GRID:grid.457334.2); McGill University, Department of Biomedical Engineering, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, Montreal, Canada (GRID:grid.14709.3b) (ISNI:0000 0004 1936 8649); Mila—Quebec Artificial Intelligence Institute, Montreal, Canada (GRID:grid.14709.3b) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
21583188
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2487258188
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.