Full text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An analogy with our previously published theory on the ionospheric auroral gyroscope provides a new perspective in human eye optics. Based on cone cells’ real distribution, we model the human eye macula as a pseudospherical surface. This allows the rigorous description of the photoreceptor cell densities in the parafoveal zones modeled further by an optimized paving method. The hexagonal photoreceptors’ distribution has been optimally projected on the elliptical pseudosphere, thus designing a prosthetic array counting almost 7000 pixel points. Thanks to the high morphological similarities to a normal human retina, the visual prosthesis performance in camera-free systems might be significantly improved.

Details

Title
Human Eye Optics within a Non-Euclidian Geometrical Approach and Some Implications in Vision Prosthetics Design
First page
215
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2487494442
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.