It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The effects of the microstructure on the tensile and creep properties of the alloy at room temperature and high temperature were investigated by controlling the microstructures of the alloy by different hot working processes. It is found that the lath microstructure obtained by forging in B2 single phase zone has high tensile strength. The tensile strength is 1188 MPa at room temperature and 950 MPa at high temperature. The equiaxed structure obtained by forging in O+B2 phase region has the characteristics of high plasticity, creep resistance and low tensile strength. The elongation at room temperature is 9.0%, and the elongation at high temperature is 36%. The ambient temperature, high temperature tensile properties of the dual microstructure obtained by forging in the three-phase zone of α2+O+B2 are between the lath and the equiaxed microstructure.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer