It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Directed Energy Deposition of the commercial intermetallic Ti-48Al-2Cr-2Nb alloy was investigated. The CLAD® process is dependent on multiple parameters, which were successfully optimised through several experiments, including series of beads, small blocks, and massive blocks, under argon atmosphere. The use of adapted temperature management leads to massive blocks manufacturing that bear no apparent macroscopic defects, such as cracks, which are generally observed in this brittle material due to strong temperature cycling during the manufacturing. The microstructure and geometrical parameters were characterised by scanning electron microscopy (SEM). This process generates an ultra-fine and anisotropic microstructure, which is restored to a homogeneous duplex microstructure by a subsequent heat-treatment. Mechanical characterisation is in progress and will be used to validate the soundness of the materials produced in these conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer