It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An investigation of extended depth-of-field camera with optimized phase mask and digital restoration is presented. The goal of this paper is to implement the wavefront coding technique without affecting much of the original design, and the design has taken the complexity of imaging system into consideration. The optimized strength of cubic phase mask (CPM) is based on the analytical optimal solution for the task-based imaging system [J. Opt. Soc. Am. A 25, 1064 (2008)]. The noisy intermediate images of CPM system with highest spatial frequency of interest can be effectively restored by vector-based Richardson-Lucy algorithm. Restoration from the system with generalized CPM produces precise image position than the system with CPM does. In general, the CPM system procures modulation transfer function higher than 0.195 in the whole depth-of-field, and the mean squared error of the restored images are less than 5 %.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer