It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding the ignition mechanism of spontaneous combustion is critical for preventing it. In this work, the effects of different test conditions including oxygen concentration, heating rate, oxidation carrier gas flow rate, and sample amount on the ignition temperature were studied with a thermal gravimetric analyzer. Further, the effects of coal properties on the ignition temperature were also investigated using 15 different low-rank coals. A heterogenous ignition model was proposed that small amount of active species is the key material leading to ignition. The heterogenous ignition mechanism well explained the complex effects of test conditions and coal properties on the ignition temperature of low-rank coal. Finally, an empirical formula for predicting the ignition temperature was derived for the rapid assessment of the spontaneous combustion potential.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer