Abstract

Quantum computing leverages the quantum resources of superposition and entanglement to efficiently solve computational problems considered intractable for classical computers. Examples include calculating molecular and nuclear structure, simulating strongly interacting electron systems, and modeling aspects of material function. While substantial theoretical advances have been made in mapping these problems to quantum algorithms, there remains a large gap between the resource requirements for solving such problems and the capabilities of currently available quantum hardware. Bridging this gap will require a co-design approach, where the expression of algorithms is developed in conjunction with the hardware itself to optimize execution. Here we describe an extensible co-design framework for solving chemistry problems on a trapped-ion quantum computer and apply it to estimating the ground-state energy of the water molecule using the variational quantum eigensolver (VQE) method. The controllability of the trapped-ion quantum computer enables robust energy estimates using the prepared VQE ansatz states. The systematic and statistical errors are comparable to the chemical accuracy, which is the target threshold necessary for predicting the rates of chemical reaction dynamics, without resorting to any error mitigation techniques based on Richardson extrapolation.

Details

Title
Ground-state energy estimation of the water molecule on a trapped-ion quantum computer
Author
Nam Yunseong 1   VIAFID ORCID Logo  ; Chen Jwo-Sy 1 ; Pisenti Neal C 1 ; Wright, Kenneth 1 ; Delaney, Conor 1 ; Maslov Dmitri 2 ; Brown, Kenneth R 3   VIAFID ORCID Logo  ; Stewart, Allen 4 ; Amini, Jason M 4 ; Apisdorf Joel 4 ; Beck, Kristin M 4   VIAFID ORCID Logo  ; Blinov Aleksey 4 ; Chaplin Vandiver 4 ; Chmielewski Mika 5 ; Collins, Coleman 6 ; Debnath Shantanu 6 ; Hudek, Kai M 6   VIAFID ORCID Logo  ; Ducore, Andrew M 6 ; Keesan Matthew 6 ; Kreikemeier, Sarah M 6 ; Mizrahi, Jonathan 6 ; Solomon, Phil 6   VIAFID ORCID Logo  ; Williams, Mike 6 ; Wong-Campos, Jaime David 6 ; Moehring, David 6 ; Monroe, Christopher 7 ; Kim, Jungsang 8   VIAFID ORCID Logo 

 IonQ, Inc., College Park, USA 
 National Science Foundation, Alexandria, USA (GRID:grid.431093.c) (ISNI:0000 0001 1958 7073) 
 IonQ, Inc., College Park, USA (GRID:grid.431093.c); Duke University, Department of Electrical and Computer Engineering, Durham, USA (GRID:grid.26009.3d) (ISNI:0000 0004 1936 7961) 
 IonQ, Inc., College Park, USA (GRID:grid.26009.3d) 
 IonQ, Inc., College Park, USA (GRID:grid.26009.3d); University of Maryland, Joint Quantum Institute and Department of Physics, College Park, USA (GRID:grid.164295.d) (ISNI:0000 0001 0941 7177) 
 IonQ, Inc., College Park, USA (GRID:grid.164295.d) 
 IonQ, Inc., College Park, USA (GRID:grid.164295.d); University of Maryland, Joint Quantum Institute and Department of Physics, College Park, USA (GRID:grid.164295.d) (ISNI:0000 0001 0941 7177) 
 IonQ, Inc., College Park, USA (GRID:grid.164295.d); Duke University, Department of Electrical and Computer Engineering, Durham, USA (GRID:grid.26009.3d) (ISNI:0000 0004 1936 7961) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20566387
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2488773338
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.