Abstract

As superconducting qubit circuits become more complex, addressing a large array of qubits becomes a challenging engineering problem. Dense arrays of qubits benefit from, and may require, access via the third dimension to alleviate interconnect crowding. Through-silicon vias (TSVs) represent a promising approach to three-dimensional (3D) integration in superconducting qubit arrays—provided they are compact enough to support densely-packed qubit systems without compromising qubit performance or low-loss signal and control routing. In this work, we demonstrate the integration of superconducting, high-aspect ratio TSVs—10 μm wide by 20 μm long by 200 μm deep—with superconducting qubits. We utilize TSVs for baseband control and high-fidelity microwave readout of qubits using a two-chip, bump-bonded architecture. We also validate the fabrication of qubits directly upon the surface of a TSV-integrated chip. These key 3D-integration milestones pave the way for the control and readout of high-density superconducting qubit arrays using superconducting TSVs.

Details

Title
Solid-state qubits integrated with superconducting through-silicon vias
Author
Yost D R W 1   VIAFID ORCID Logo  ; Schwartz, M E 1   VIAFID ORCID Logo  ; Mallek, J 1 ; Rosenberg, D 1 ; Stull, C 1 ; Yoder, J L 1 ; Calusine, G 1   VIAFID ORCID Logo  ; Cook, M 1 ; Das, R 1 ; Day, A L 1 ; Golden, E B 1 ; Kim, D K 1 ; Melville, A 1 ; Niedzielski, B M 1 ; Woods, W 1 ; Kerman, A J 1   VIAFID ORCID Logo  ; Oliver, W D 2   VIAFID ORCID Logo 

 MIT Lincoln Laboratory, Lexington, USA (GRID:grid.504876.8) (ISNI:0000 0001 0684 1626) 
 MIT Lincoln Laboratory, Lexington, USA (GRID:grid.504876.8) (ISNI:0000 0001 0684 1626); Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
Publication year
2020
Publication date
2020
Publisher
Nature Publishing Group
e-ISSN
20566387
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2488773720
Copyright
© The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.