It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The resource theory of coherence studies the operational value of superpositions in quantum technologies. A key question in this theory concerns the efficiency of manipulation and interconversion of the resource. Here, we solve this question completely for qubit states by determining the optimal probabilities for mixed-state conversions via stochastic incoherent operations. Extending the discussion to distributed scenarios, we introduce and address the task of assisted incoherent state conversion, where the process is enhanced by making use of correlations with a second party. Building on these results, we demonstrate experimentally that the optimal state-conversion probabilities can be achieved in a linear optics setup. This paves the way towards real world applications of coherence transformations in current quantum technologies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Science and Technology of China, CAS Key Laboratory of Quantum Information, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639); University of Science and Technology of China, CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei, China (GRID:grid.59053.3a) (ISNI:0000000121679639)
2 Universität Ulm, Institute of Theoretical Physics, Ulm, Germany (GRID:grid.6582.9) (ISNI:0000 0004 1936 9748)
3 University of Warsaw, Centre for Quantum Optical Technologies, Centre of New Technologies, Warsaw, Poland (GRID:grid.12847.38) (ISNI:0000 0004 1937 1290)