Full Text

Turn on search term navigation

Copyright © 2021 Wael Zatar et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

This paper presents the application of an Artificial Intelligence-based method in analyzing the effects of environmental conditions, chloride contamination in concrete, and surface corrosion of rebars on the amplitude of Ground Penetrating Radar (GPR) signals. Six reinforced concrete slabs with different chloride contamination mixtures were fabricated and tested. GPR data were collected under various temperature and ambient humidity combinations. A total of 288 rebar picks were used for training, validation, and testing the proposed Artificial Neural Network (ANN) model. Multiple ANN model configurations with a variation in learning algorithms and the number of nodes in the hidden layer were explored to obtain the optimal model for the nondestructive data. It is shown that the “trainlm” learning algorithm produced the high accuracy prediction of the reflection amplitude of GPR signals. The sensitivity analysis was also conducted with the ANN model to investigate the effects of the input on the output parameters. Results from the sensitivity analysis revealed that the GPR reflection amplitudes were more sensitive to the changes of temperature parameter (TEM) and chloride contamination level (CCL), while they were less sensitive to the variation of ambient relative humidity (ARH) and rust condition on the rebar surface (CSR).

Details

Title
Predicting GPR Signals from Concrete Structures Using Artificial Intelligence-Based Method
Author
Zatar, Wael 1 ; Nguyen, Tu T 2   VIAFID ORCID Logo  ; Nguyen, Hai 1 

 College of Engineering and Computer Sciences, Marshall University, Huntington, WV 25755, USA 
 College of Engineering and Computer Sciences, Marshall University, Huntington, WV 25755, USA; Civil Engineering Department, Hanoi Architectural University, Hanoi, Vietnam 
Editor
Raffaele Landolfo
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
16878086
e-ISSN
16878094
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2489112769
Copyright
Copyright © 2021 Wael Zatar et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/