It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Over the past decade, recommendation systems have been one of the most sought after by various researchers. Basket analysis of online systems’ customers and recommending attractive products (movies) to them is very important. Providing an attractive and favorite movie to the customer will increase the sales rate and ultimately improve the system. Various methods have been proposed so far to analyze customer baskets and offer entertaining movies but each of the proposed methods has challenges, such as lack of accuracy and high error of recommendations. In this paper, a link prediction-based method is used to meet the challenges of other methods. The proposed method in this paper consists of four phases: (1) Running the CBRS that in this phase, all users are clustered using Density-based spatial clustering of applications with noise algorithm (DBScan), and classification of new users using Deep Neural Network (DNN) algorithm. (2) Collaborative Recommender System (CRS) Based on Hybrid Similarity Criterion through which similarities are calculated based on a threshold (lambda) between the new user and the users in the selected category. Similarity criteria are determined based on age, gender, and occupation. The collaborative recommender system extracts users who are the most similar to the new user. Then, the higher-rated movie services are suggested to the new user based on the adjacency matrix. (3) Running improved Friendlink algorithm on the dataset to calculate the similarity between users who are connected through the link. (4) This phase is related to the combination of collaborative recommender system’s output and improved Friendlink algorithm. The results show that the Mean Squared Error (MSE) of the proposed model has decreased respectively 8.59%, 8.67%, 8.45% and 8.15% compared to the basic models such as Naive Bayes, multi-attribute decision tree and randomized algorithm. In addition, Mean Absolute Error (MAE) of the proposed method decreased by 4.5% compared to SVD and approximately 4.4% compared to ApproSVD and Root Mean Squared Error (RMSE) of the proposed method decreased by 6.05 % compared to SVD and approximately 6.02 % compared to ApproSVD.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Islamic Azad University, Department of Management, Isfahan (Khorasgan) Branch, Isfahan, Iran (GRID:grid.411757.1) (ISNI:0000 0004 1755 5416)
2 Alzahra University, Department of Engineering, Tehran, Iran (GRID:grid.411354.6) (ISNI:0000 0001 0097 6984)