Abstract

The most advanced P. falciparum circumsporozoite protein-based malaria vaccine, RTS,S/AS01 (RTS,S), confers partial protection but with antibody titers that wane relatively rapidly, highlighting the need to elicit more potent and durable antibody responses. Here, we elucidate crystal structures, binding affinities and kinetics, and in vivo protection of eight anti-NANP antibodies derived from an RTS,S phase 2a trial and encoded by three different heavy-chain germline genes. The structures reinforce the importance of homotypic Fab-Fab interactions in protective antibodies and the overwhelmingly dominant preference for a germline-encoded aromatic residue for recognition of the NANP motif. In this study, antibody apparent affinity correlates best with protection in an in vivo mouse model, with the more potent antibodies also recognizing epitopes with repeating secondary structural motifs of type I β- and Asn pseudo 310 turns; such insights can be incorporated into design of more effective immunogens and antibodies for passive immunization.

The most advanced P. falciparum circumsporozoite protein (PfCSP)-based malaria vaccine confers partial protection. Here, Pholcharee et al. present crystal structures, binding affinities/kinetics, and in vivo protection of 8 anti-NANP antibodies to understand in vivo protection of PfCSP-targeting antibodies.

Details

Title
Structural and biophysical correlation of anti-NANP antibodies with in vivo protection against P. falciparum
Author
Tossapol, Pholcharee 1   VIAFID ORCID Logo  ; Oyen, David 2 ; Flores-Garcia, Yevel 3 ; Gonzalez-Paez, Gonzalo 1   VIAFID ORCID Logo  ; Han, Zhen 4 ; Williams, Katherine L 5 ; Volkmuth Wayne 5 ; Emerling, Daniel 5 ; Locke, Emily 6 ; Richter, King C 6   VIAFID ORCID Logo  ; Zavala Fidel 3   VIAFID ORCID Logo  ; Wilson, Ian A 7   VIAFID ORCID Logo 

 The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, USA (GRID:grid.214007.0) (ISNI:0000000122199231) 
 The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, USA (GRID:grid.214007.0) (ISNI:0000000122199231); Pfizer Inc, San Diego, USA (GRID:grid.410513.2) (ISNI:0000 0000 8800 7493) 
 Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, USA (GRID:grid.214007.0) (ISNI:0000000122199231); Wondfo USA Co., Ltd, San Diego, USA (GRID:grid.214007.0) 
 Atreca Inc, South San Francisco, USA (GRID:grid.214007.0) 
 PATH’s Malaria Vaccine Initiative, Washington, USA (GRID:grid.214007.0) 
 The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, USA (GRID:grid.214007.0) (ISNI:0000000122199231); The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, USA (GRID:grid.214007.0) (ISNI:0000000122199231) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2489905966
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.