It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Sandy beaches are highly dynamic systems which provide natural protection from the impact of waves to coastal communities. With coastal erosion hazards predicted to increase globally, data to inform decision making on erosion mitigation and adaptation strategies is becoming critical. However, multi-temporal topographic data over wide geographical areas is expensive and time consuming and often requires highly trained professionals. In this study we demonstrate a novel approach combining citizen science with low-cost unmanned aerial vehicles that reliably produces survey-grade morphological data able to model sediment dynamics from event to annual scales. The high-energy wave-dominated coast of south-eastern Australia, in Victoria, is used as a field laboratory to test the reliability of our protocol and develop a set of indices to study multi-scale erosional dynamics. We found that citizen scientists provide unbiased data as accurate as professional researchers. We then observed that open-ocean beaches mobilise three times as much sediment as embayed beaches and distinguished between slowed and accelerated erosional modes. The data was also able to assess the efficiency of sand nourishment for shore protection. Our citizen science protocol provides high quality monitoring capabilities, which although subject to important legislative preconditions, it is applicable in other parts of the world and transferable to other landscape systems where the understanding of sediment dynamics is critical for management of natural or anthropogenic processes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Deakin University, School of Life and Environmental Sciences, Warrnambool, Australia (GRID:grid.1021.2) (ISNI:0000 0001 0526 7079)
2 The University of Melbourne, School of Geography, Melbourne, Australia (GRID:grid.1008.9) (ISNI:0000 0001 2179 088X)