Abstract

The promise of quantum computing lies in harnessing programmable quantum devices for practical applications such as efficient simulation of quantum materials and condensed matter systems. One important task is the simulation of geometrically frustrated magnets in which topological phenomena can emerge from competition between quantum and thermal fluctuations. Here we report on experimental observations of equilibration in such simulations, measured on up to 1440 qubits with microsecond resolution. By initializing the system in a state with topological obstruction, we observe quantum annealing (QA) equilibration timescales in excess of one microsecond. Measurements indicate a dynamical advantage in the quantum simulation compared with spatially local update dynamics of path-integral Monte Carlo (PIMC). The advantage increases with both system size and inverse temperature, exceeding a million-fold speedup over an efficient CPU implementation. PIMC is a leading classical method for such simulations, and a scaling advantage of this type was recently shown to be impossible in certain restricted settings. This is therefore an important piece of experimental evidence that PIMC does not simulate QA dynamics even for sign-problem-free Hamiltonians, and that near-term quantum devices can be used to accelerate computational tasks of practical relevance.

Experimental demonstration of quantum speedup that scales with the system size is the goal of near-term quantum computing. Here, the authors demonstrate such scaling advantage for a D-Wave quantum annealer over analogous classical algorithms in simulations of frustrated quantum magnets.

Details

Title
Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
Author
King, Andrew D 1   VIAFID ORCID Logo  ; Raymond, Jack 1 ; Lanting Trevor 1 ; Isakov, Sergei V 2 ; Mohseni Masoud 3 ; Poulin-Lamarre, Gabriel 1   VIAFID ORCID Logo  ; Ejtemaee Sara 1 ; Bernoudy, William 1 ; Ozfidan Isil 1 ; Smirnov, Anatoly Yu 1 ; Reis, Mauricio 1 ; Altomare Fabio 1 ; Babcock, Michael 1 ; Baron, Catia 1 ; Berkley, Andrew J 1   VIAFID ORCID Logo  ; Boothby, Kelly 1 ; Bunyk, Paul I 1 ; Christiani Holly 1 ; Enderud Colin 1 ; Evert Bram 1 ; Harris, Richard 1 ; Hoskinson Emile 1 ; Huang Shuiyuan 1   VIAFID ORCID Logo  ; Jooya Kais 1 ; Khodabandelou Ali 1 ; Ladizinsky Nicolas 1 ; Li, Ryan 1 ; Aaron, Lott P 1 ; MacDonald, Allison J, R 1 ; Marsden Danica 1 ; Marsden Gaelen 1 ; Medina, Teresa 1 ; Molavi Reza 1 ; Neufeld, Richard 1 ; Norouzpour Mana 1 ; Oh, Travis 1 ; Pavlov, Igor 1 ; Perminov Ilya 1 ; Prescott, Thomas 1 ; Rich, Chris 1   VIAFID ORCID Logo  ; Sato Yuki 1 ; Sheldan Benjamin 1 ; Sterling, George 1 ; Swenson, Loren J 1 ; Tsai, Nicholas 1 ; Volkmann, Mark H 1 ; Whittaker, Jed D 1   VIAFID ORCID Logo  ; Wilkinson, Warren 1 ; Yao, Jason 1 ; Neven Hartmut 3 ; Hilton, Jeremy P 1 ; Ladizinsky, Eric 1 ; Johnson, Mark W 1 ; Amin, Mohammad H 4 

 D-Wave Systems, Burnaby, Canada (GRID:grid.421761.7) (ISNI:0000 0004 0450 6527) 
 Google, Zurich, Switzerland (GRID:grid.472568.a) 
 Google, Venice, USA (GRID:grid.420451.6) 
 D-Wave Systems, Burnaby, Canada (GRID:grid.421761.7) (ISNI:0000 0004 0450 6527); Simon Fraser University, Department of Physics, Burnaby, Canada (GRID:grid.61971.38) (ISNI:0000 0004 1936 7494) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2490848146
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.