It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Mandibular fracture healing is a complex process involving nerves and growth factors. Nerve growth factor (NGF) not only facilitates the maintenance of sympathetic neurite growth but also stimulates other growth factors that can promote the essential osteogenesis and angiogenesis for fracture healing. Therefore, it is necessary to analyze the combined effects of NGF, bone morphogenic protein-9 (BMP-9), and vascular endothelial growth factor (VEGF) to accelerate the healing of mandible fractures.
Methods
The models of mandible fracture with local nerve injury established in 48 rabbits were randomly divided into nerve growth factor group (NGF group), gelatin sponge group (GS group), blank group, and intact group. The recovery of nerve reflex was assessed by observing the number of rabbits with lower lip responses to acupuncture. The fracture healing was observed with visual and CBCT, and then callus tissues from the mandibular fracture area were collected for hematoxylin and eosin (HE) staining observation, and the expression of BMP-9 and VEGF in callus at different stages was detected by quantitative real-time PCR (qRT-PCR).
Results
Needling reaction in the lower lip showed the number of animals with nerve reflex recovery was significantly higher in the NGF group than that in the GS and blank groups at the 2nd and 4th weeks after the operation. The combined results of macroscopic observation, CBCT examination, and histological analysis showed that a large number of osteoblasts and some vascular endothelial cells were found around the trabecular bone in the NGF group and the amount of callus formation and reconstruction was better than that in the GS group at the 2nd week after the operation. The qRT-PCR results indicated that the expression levels of BMP-9 and VEGF in the four groups reached the highest values at the 2nd week, while the expression levels of both in the NGF group were significantly higher than that in the GS group.
Conclusion
The exogenous NGF could accelerate the healing of mandible fractures. This work will provide a new foundation and theoretical basis for clarifying the mechanism of fracture healing, thereby promoting fracture healing and reducing the disability rate of patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer