It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background and aim
Osteoarthritis (OA) is a multiple factorial disease with unidentified specific markers. The alternate method such as biochemical and genetic markers for the diagnosis of osteoarthritis is an undeniable need of the current era. In the present study, we aimed to investigate the association of interleukin-6 (IL-6)(IL-6-174G/C), transforming growth factor-β1 (TGF-beta1-29C/T), and calmodulin 1 gene-16C/T (CALM1-16C/T) polymorphism in clinically definite Pakistani OA patients and matching controls.
Methods
The study design was based on biochemical analysis of OA via serum hyaluronic acid (HA) enzyme-linked immunosorbent assay (ELISA) test and genetic analysis based on amplification refractory mutation system (ARMS) PCR. Statistical evaluations of allele probabilities were carried through chi-squared test. This study includes 295 subjects including 100 OA patients, 105 OA susceptible, and 90 controls.
Results
HA levels obtained were distinct for all the populations: patients with a mean value of ± 5.15, susceptible with mean value of ± 2.27, and control with mean value of ± 0.50. The prevalent genotypes in OA were GG genotype for IL-6-174G/C, CT genotypes for TGF β1-29C/T, and TT genotype for CALM1-16C/T polymorphism. A significant P value of 0.0152 is obtained as a result of the comparison among the patients and controls on the number of individuals possessing the disease-associated genotypes.
Conclusions
The positive association of GG genotype for IL-6-174G/C, TT genotype for CALM1-16C/T polymorphism in OA while high prevalence of CT TGF β1-29 C/T genotypes in susceptible population in our study group implies these polymorphisms can serve as susceptible marker to OA and genetic factors for screening OA patients in Pakistan. There might be other factors that may influence disease susceptibility. However, further investigations on larger population are required to determine the consequences of genetic variations for prediagnosis of OA.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer