It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Microbes are present in almost every environment on Earth, even in those with extreme environmental conditions such as Antarctica, where rocks may represent the main refuge for life. Lithobiontic communities are composed of microorganisms capable of colonizing rocks and, as it is a not so well studied bacterial community, they may represent a very interesting source of diversity and functional traits with potential for biotechnological applications. In this work we analyzed the ability of Antarctic lithobiontic bacterium to synthesize cadmium sulfide quantum dots (CdS QDs) and their potential application in solar cells.
Results
A basaltic andesite rock sample was collected from Fildes Peninsula, King George Island, Antarctica, and processed in order to isolate lithobiontic bacterial strains. Out of the 11 selected isolates, strain UYP1, identified as Pedobacter, was chosen for further characterization and analysis due to its high cadmium tolerance. A protocol for the biosynthesis of CdS QDs was developed and optimized for this strain. After 20 and 80 min of synthesis, yellow-green and orange-red fluorescent emissions were observed under UV light, respectively. QDs were characterized through spectroscopic techniques, dynamic light scattering analysis, high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy. Nanostructures of 3.07 nm, composed of 51.1% cadmium and 48.9% sulfide were obtained and further used as photosensitizer material in solar cells. These solar cells were able to conduct electrons and displayed an open circuit voltage of 162 mV, a short circuit current density of 0.0110 mA cm−2, and had an efficiency of conversion up to 0.0016%, which is comparable with data previously reported for solar cells sensitized with biologically produced quantum dots.
Conclusions
We report a cheap, rapid and eco-friendly protocol for the production of CdS QDs by an Antarctic lithobiontic bacterium, Pedobacter, a genus that was not previously reported as a quantum dot producer. The application of the biosynthesized QDs as sensitizer material in solar cells was validated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer