It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Alkaline-earth iron arsenide (122) is one of the most studied families of iron-based superconductors, especially for angle-resolved photoemission spectroscopy. While extensive photoemission results have been obtained, the surface complexity of 122 caused by its charge-non-neutral surface is rarely considered. Here, we show that the surface of 122 can be neutralized by potassium deposition. In potassium-coated BaFe2(As0.7P0.3)2, the surface-induced spectral broadening is strongly suppressed, and hence the coherent spectra that reflect the intrinsic bulk electronic state recover. This enables the measuring of superconducting gap with unpreceded precision. The result shows the existence of two pairing channels. While the gap anisotropy on the outer hole/electron pockets can be well fitted using an s± gap function, the gap anisotropy on the inner hole/electron shows a clear deviation. Our results provide quantitative constraints for refining theoretical models and also demonstrate an experimental method for revealing the intrinsic electronic properties of 122 in future studies.
The lack of a clean charge neutral cleavage plane for the 122 family of iron-based superconductors has complicated surface-sensitive spectroscopy probes from revealing the intrinsic electronic properties of these materials. Here the authors introduce an effective surface dosing method that drastically improves the observed spectral quality, thus revealing unprecedented details of the superconducting gap anisotropy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Peking University, International Centre for Quantum Materials, School of Physics, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319)
2 Peking University, International Centre for Quantum Materials, School of Physics, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319); Collaborative Innovation Centre of Quantum Matter, Beijing, China (GRID:grid.11135.37)