This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
1. Introduction
An unmanned aerial vehicle (UAV), which is developed originally for military purposes, has been widely applied to the civilian domain. With the miniaturization of equipment, the continuous reduction of manufacturing cost, and the continuous improvement of communication performance, the UAV-based wireless communication has attracted much attention. In the IoT, ultrahigh data rates and reliability are critical to a lot of user connections and network sensors. In order to improve the performance of IoT networks, a massive MIMO two-way relaying system has been studied [1]. The reliability of the communication systems can be improved by Simultaneous Wireless Information and Power Transfer (SWIPT). Furthermore, with the large-scale use of mobile IoT devices, such as wearable devices, driverless cars, and intelligent terminals, the problem of making the GBS cover more communication terminals needs to be solved urgently. The coordinated direct and relay transmission (CDRT) system is investigated to extend the communication coverage in [2]. In order to improve the spectrum efficiency, the uplink and downlink transmissions are designed jointly via network coding. Meanwhile, the advantages of the proposed scheme are verified by simulations. Meanwhile, the demand for the IoT based on UAV will be more urgent. UAV can improve the communication performance of the IoT nodes, especially in the network, whose coverage quality is poor, such as construction sites, disaster areas, highways, and narrow lanes. However, the performance of the UAV will be affected by its limited battery capacity. The method of improving the EE has become a significant direction.
The crucial drivers of IoT contain the daily addition of new devices with their own data models [3]. This leads to an enormous increase of the structured data in size and complexity. There is a demand to abstract the heterogeneity of devices so that their functions can be represented as virtual combination platforms [4–6]. A semantic IoT framework can accept heterogeneous models, which can support data sharing between devices. Thus, it needs an efficient method to update the metadata. The IoT directory sustaining semantic description of IoT objects is proposed in [7]. Semantic description and semantic collaboration have become effective methods to realize information interaction and sharing between objects.
Usually, UAVs operate in an unlicensed spectrum. In the IoT, there are many wireless technologies, such as Wi-Fi, Bluetooth, and cellular network. The spectrum resources of the IoT become more and more scarce due to the explosive growth of wireless devices [8]. As is known to us all, a cognitive radio (CR) permits a secondary user (SU) to opportunistic access the licensed spectrum without interfering with the primary user (PU). Employing CR technology for the spectrum scarcity issue of IoT is a potential solution.
Under this background, a large number of researches on UAV-assisted IoT communication and cognitive UAV communication have been carried out. The problem of energy saving and consumption reduction of mobile IoT becomes more and more prominent. The joint optimal deployment of static ground nodes and UAVs is studied in Reference [9]. Due to the lack of dynamic research between UAVs and ground nodes, it is necessary to consider the UAV mobile relay system. Under the constraints of UAV mobility, the transmission power of the transmitter and UAV trajectory is optimized to maximize the throughput [10]. Moreover, the spectrum efficiency and energy efficiency are maximized by optimizing time allocation, flight speed, and trajectory of UAV [11]. The results show that the tradeoff between the maximum achievable spectrum efficiency and energy efficiency can be achieved by the design of the trajectory.
Aiming to improve the spectrum efficiency of IoT, it is necessary to study IoT-based CR; meanwhile, the devices in the IoT are able to sense the wireless environment [12]. The use of spectrum sharing technology in the IoT is also considered to be a mutually beneficial solution [13]. When the transmission rate of PU is lower than the requirement, a part of bandwidth is authorized to the SU to achieve the purpose of cooperative transmission. Compared with ground spectrum sensing technology, UAV spectrum sensing can obtain better sensing performance. Spectrum sensing performance can be improved by increasing the number of samples which is related to spectrum sensing time. However, improving the sensing performance may consume more sensing time and thus decrease the transmission time. It is proved that there is a sensing-throughput tradeoff in spectrum sensing of the CR, i.e., there exists an optimal sensing time that makes throughput of the CR achieve the maximal value [14]. In [15], the cooperative method based on decode-and-forward and physical-layer network coding is proposed to reduce the transmission delay of wireless sensor networks. Furthermore, the cooperative compressed spectrum sensing algorithm for UAV is proposed to improve sensing accuracy, which allows ground nodes to send compressed sensing information to UAV [16–18].
Semantic IoT devices with cognitive function can solve the problem of low spectrum efficiency by spectrum sensing [19]. UAV, as the air interface of the IoT, can effectively solve the problem of long-distance communication under the condition of energy limitation of IoT. However, there are few studies applying these two advantages of UAV to the semantic IoT. This paper considers that the CR-based UAV can opportunistically use the spectrum to provide information for the remote semantic IoT devices. In order to achieve the green and autonomous IoT, the EE of the cognitive UAV system is investigated.
In this paper, the maximization of semantic IoT’s EE based on cognitive UAV is studied. On the basis of building a semantic device model for cognitive UAV to assist IoT communication, we jointly optimize the UAV sensing time, UAV flight speed, and UAV communication distance to maximize the EE. We solve this problem by dividing it into three subproblems. And an efficient alternative algorithm is proposed to obtain the optimal solution. Through computer simulations, we verify the proposed scheme. It is concluded that the proposed scheme can achieve better performance compared to the benchmark schemes and can obtain the maximum EE.
The rest of this paper is organized as follows. In Section 2, we consider a cognitive fixed-wing UAV with a circular trajectory. The UAV can opportunistically access the spectrum of GBS. And the semantic device model for cognitive UAV-assisted IoT communication is constructed, which is used to establish autonomous communication links between UAV and the ground nodes farther away from the ground base station (GBS). In Section 3, an algorithm is proposed to obtain the maximal EE of UAV cognitive communication. In Section 4, the algorithm is simulated. And the comparison shows that our joint optimization scheme can significantly improve the EE. Finally, conclusions are drawn in Section 5.
2. System Model
We consider a UAV-assisted edge IoT model consisting of a GBS, a UAV, and a group of ground nodes, such as car nodes, smartphone nodes, and computer nodes. As a relay node, the cognitive UAV is aimed at serving the ground nodes with low communication quality due to the long distance from the GBS. At the same time, the cognitive UAV can use the spectrum of GBS to communicate with the ground nodes and transmits its own messages when the spectrum of the GBS is idle [20]. Since the battery capacity of the UAV is usually limited, we aim to maximize the energy efficiency of UAV relay communication on the basis of improving spectrum efficiency in the IoT.
The UAV flies in a circle around the GBS which is located at the center of the circular flight path. We consider that the UAVs are equipped with a Global Positioning System (GPS); thus, their geographical coordinates can be obtained. The flying speed of UAV in a circular motion is
[figure omitted; refer to PDF]
The association rules between UAV and ground nodes can be determined by semantic technology. In order to support the autonomous scheduling of communication, the semantic representation model of IoT nodes is constructed from four aspects of basic equipment information, communication capability, communication state, and operation control, as shown in Figure 2.
[figure omitted; refer to PDF]
The basic parameters are the semantic descriptions of its name, type, and technical parameters, where the location parameter represents the three-dimensional position of the node, which is needed for cognitive UAV to establish an assisted communication link. Application description describes the relevant parameter information of the node in different environments. And the communication mode, protocol, and communication coverage range of UAV are described by communication capability.
Let the task state indicate whether the node can establish the communication link. And the communication quality of IoT nodes covered by GBS is defined by coverage quality. The sensing state represents the information obtained by the UAV through environment sensing.
In order to enable UAV to adjust speed, sensing time, and communication coverage range in response to changing electromagnetic environment, we conducted a semantic model for operational control. The acquisition of ground nodes’ state and control of communication link establishment are also described in the model of operating control.
Then, at a certain moment, the UAV can establish communication link with ground nodes in a circular region
[figure omitted; refer to PDF]
We define
The frame
Then, two types of channels are considered: (i) the GBS to UAV channel and (ii) the UAV to ground node channel. These channels can be assumed to be line of sight (LOS). We assume that the UAV is flying horizontally with a fixed altitude
In this paper, we consider that the bandwidth of the GBS has been allocated in advance. It is assumed that the total available bandwidth provided to UAV is
The transmission power of UAV to each ground node is defined as
Let
Next, the situation in which the UAV can use the frequency band of GBS is divided into the following two cases:
(i) When true status of the GBS is inactive and the sensing result of the UAV shows that it is inactive, the achievable throughput of the UAV’s communication link is
(ii) When true status of the GBS is active and the sensing result of the UAV shows that it is inactive, the achievable throughput of the UAV’s communication link is
Suppose that the primary signal is a binary phase shift keying (BPSK) signal, the noise is a real-valued Gaussian variable. And the energy detection method is used to detect the GBS’s status. The signal to noise ratio (SNR) received by UAV is denoted as
Then, for given target probabilities
When the frequency band
Hence, the effective throughput of the UAV communication link without active GBS is given as follows:
When the GBS is inactive, the throughput is
Then, the average throughput of the UAV communication link is
The following three cases will be considered when we analyze
(i) When the UAV fails to sense that the GBS is active, there is interference between UAV and GBS; hence, the value of
(ii) The target detection probability is usually greater than 0.9 for the SNR of -20 dB, which is in IEEE 802.22 WRAN
(iii) The GBS’s active probability
Based on the above analysis,
Next, we analyze the energy consumption of UAV. The energy consumption of UAV is divided into two parts. One is the energy consumption associated with communication; the other is the energy required to maintain a fixed-wing drone flight. In practice, the power associated with communication is usually much smaller than the power needed to fly. The power needed to communicate is typically a few watts, but the UAV’s propulsion power is usually hundreds of watts. Therefore, the power associated with UAV communication is ignored in this paper.
For constant speed circular flight, we have
According to formulas (9) and (10), the energy efficiency of IoT based on cognitive UAV can be expressed as
It is a function with
3. Solutions of the Optimization Problem
Our goal is to maximize the energy efficiency of the IoT based on cognitive UAV relay communication by optimizing UAV flying speed
In the objective function,
3.1. Optimization of
The first subproblem
In order to obtain the optimal flight speed of UAV, we take its first derivative of the
Then, we have
As the result shown in equation (15), we can know that
Obviously, the function
3.2. Optimization of
The second subproblem is to achieve the maximal average throughput when
Therefore, we can obtain that the average throughput is a function of
Then,
Since
Equation (21) shows that
3.3. Optimization of
The last subproblem
Notice that we need to adjust the value of
For any fixed radius
Define
Let
equation (24) can be written as
Since
Obviously,
Algorithm 1: Algorithm for energy efficiency maximization problem.
1: Input
2: Let
3: According to algorithm 2 to obtain
4: Use
5: If
else
6: If
7: Repeat step 3 and 4 calculate until
8: Record
9: Output
Algorithm 2: Subalgorithm for Algorithm 1.
1: Initialize interval (0,
2: Calculate the result of
3:
4: While
if
else
end while
5: Update
For each given
4. Numerical Results
In this section, we verify the performance of our proposed design through simulations. We set the speed of the UAV between 10 and 80. Choose
Table 1
Parameters in numerical analysis.
Parameter | Value | Parameter | Value |
0.8 | 0.001 | ||
2000 | -150 | ||
1 | 200 | ||
1 | -50 | ||
6 | |||
2250 | -20 | ||
9.8 |
Figure 4 shows that the energy efficiency varies with the sensing time
[figure omitted; refer to PDF]
Figure 5 plots how energy consumption changes as a function of the UAV flying speed, which are under three different
[figure omitted; refer to PDF]
From Figure 5, we also notice that the energy consumption increases with the increase of
[figure omitted; refer to PDF]
When communication distance threshold
[figure omitted; refer to PDF]
Figure 9 shows a comparison between the proposed scheme and other two schemes. In the fixed communication range (FCR) scheme, the communication radius of UAV is a fixed value which can achieve higher throughput. The shortest flight cycle (SFC) scheme requires the UAV to fly at maximum speed. In this scheme, the time of energy consumption is reduced as much as possible. It can be seen that the energy efficiency decreases more and more sharply as
5. Conclusions
Based on the consideration of improving spectrum efficiency in semantic IoT, this paper mainly studies the process of UAV opportunity using the spectrum of GBS to communicate with edge nodes. A semantic device model for cognitive UAV-assisted IoT communication is constructed to ensure the automation of the IoT system. Aiming to solve the problem of UAV’s limited energy supply, we propose a joint optimization algorithm to maximize the communication energy efficiency of UAV under certain constraints. In order to understand the model better, the experimental simulations are carried out. The simulation results are consistent with the theoretical analysis. It is also shown that the maximum energy efficiency for cognitive UAV in IoT can be obtained by the proposed algorithm. At the same time, the UAV’s communication coverage range
Acknowledgments
This work is supported in part by the National Natural Science Foundation of China under grant 61901509, in part by the Natural Science Foundation of Shaanxi Province of China under grant no. 2018JM6098, in part by the Research Foundation for Talented Scholars of Xijing University under grant no. XJ17B06, and in part by the President Foundation of Air Force Engineering University under grant XZJK2019033.
[1] J. Wang, G. Wang, B. Li, H. Yang, A. Schmeink, "Massive MIMO two-way relaying dystems with SWIPT in IoT networks," IEEE Internset ofsss Things Journal,DOI: 10.1109/JIOT.2020.3032446, 2020.
[2] Y. Xu, B. Li, N. Zhao, Y. Chen, X. Wang, "Coordinated direct and relay transmission with NOMA and network coding in Nakagami-m fading channels," IEEE Transactions on Communications, vol. 69 no. 1, pp. 207-222, DOI: 10.1109/TCOMM.2020.3025555, 2021.
[3] A. Palavalli, D. Karri, S. Pasupuleti, "Semantic Internet of Things," 2016 IEEE Tenth International Conference on Semantic Computing, pp. 91-95, DOI: 10.1109/ICSC.2016.35, .
[4] J. Kiljander, A. D'elia, F. Morandi, P. Hyttinen, J. Takalo-Mattila, A. Ylisaukko-Oja, J.-P. Soininen, T. S. Cinotti, "Semantic interoperability architecture for pervasive computing and Internet of Things," IEEE Access, vol. 2, pp. 856-873, DOI: 10.1109/ACCESS.2014.2347992, 2014.
[5] G. Xiao, J. Guo, L. D. Xu, Z. Gong, "User interoperability with heterogeneous IoT devices through transformation," IEEE Transactions on Industrial Informatics, vol. 10 no. 2, pp. 1486-1496, DOI: 10.1109/TII.2014.2306772, 2014.
[6] J. Takalo-Mattila, J. Kiljander, F. Pramudianto, E. Ferrera, "Architecture for mixed criticality resource management in Internet of Things," Proceedings of 2014 TRON Symposium (TRONSHOW), .
[7] S. Chun, S. Seo, B. Oh, K. Lee, "Semantic description, discovery and integration for the Internet of Things," Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing, pp. 272-275, DOI: 10.1109/ICOSC.2015.7050819, .
[8] B. Li, C. Chen, R. Zhang, H. Jiang, X. Guo, "The energy-efficient UAV-based BS coverage in air-to-ground communications," 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 578-581, DOI: 10.1109/SAM.2018.8448770, .
[9] M. Mozaffari, W. Saad, M. Bennis, M. Debbah, "Optimal transport theory for power-efficient deployment of unmanned aerial vehicles," 2016 IEEE International Conference on Communications,DOI: 10.1109/ICC.2016.7510870, .
[10] Y. Zeng, R. Zhang, T. J. Lim, "Throughput maximization for UAV-enabled mobile relaying systems," IEEE Transactions on Communications, vol. 64 no. 12, pp. 4983-4996, DOI: 10.1109/TCOMM.2016.2611512, 2016.
[11] J. Zhang, Y. Zeng, R. Zhang, "Spectrum and energy efficiency maximization in UAV-enabled mobile relaying," 2017 IEEE International Conference on Communications,DOI: 10.1109/ICC.2017.7997208, .
[12] A. Athar, M. H. Rehmani, A. Rachedi, "When cognitive radio meets the Internet of Things?," 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 469-474, DOI: 10.1109/IWCMC.2016.7577103, .
[13] B. Zhang, K. Chen, "Selective spectrum leasing in internet of things via Nash bargaining solutions," 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, pp. 841-845, DOI: 10.1109/CCIS.2012.6664294, .
[14] X. Liu, M. Guan, X. Zhang, H. Ding, "Spectrum sensing optimization in an UAV-based cognitive radio," IEEE Access, vol. 6, pp. 44002-44009, DOI: 10.1109/ACCESS.2018.2862424, 2018.
[15] B. Li, J. Yang, H. Yang, G. Liu, R. Ma, X. Peng, "Decode-and-forward cooperative transmission in wireless sensor networks based on physical-layer network coding," Wireless Networks,DOI: 10.1007/s11276-019-02092-6, 2019.
[16] N. Zhao, F. Cheng, F. R. Yu, J. Tang, Y. Chen, G. Gui, H. Sari, "Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment," IEEE Transactions on Communications, vol. 66 no. 5, pp. 2281-2294, DOI: 10.1109/TCOMM.2018.2792014, 2018.
[17] F. Cheng, S. Zhang, Z. Li, Y. Chen, N. Zhao, F. R. Yu, V. C. M. Leung, "UAV trajectory optimization for data offloading at the edge of multiple cells," IEEE Transactions on Vehicular Technology, vol. 67 no. 7, pp. 6732-6736, DOI: 10.1109/TVT.2018.2811942, 2018.
[18] H. C. Chen, H. Kung, D. Vlah, D. Hague, M. Muccio, B. Poland, "Collaborative compressive spectrum sensing in a UAV environment," 2011 - MILCOM 2011 Military Communications Conference,DOI: 10.1109/MILCOM.2011.6127507, .
[19] P. Rawat, K. D. Singh, J. M. Bonnin, "Cognitive radio for M2M and internet of things: a survey," Computer Communications, vol. 94,DOI: 10.1016/j.comcom.2016.07.012, 2016.
[20] Y. Gao, H. Tang, B. Li, X. Yuan, "Robust trajectory and power control for cognitive UAV secrecy communication," IEEE Access, vol. 8 no. 6, pp. 49338-49352, DOI: 10.1109/ACCESS.2020.2979193, 2020.
[21] Y.-C. Liang, Y. Zeng, E. C. Y. Peh, A. T. Hoang, "Sensing-throughput tradeoff for cognitive radio networks," IEEE Transactions on Wireless Communications, vol. 7 no. 4, pp. 1326-1337, DOI: 10.1109/TWC.2008.060869, 2008.
[22] H. Hu, Y. Huang, X. Da, L. Ni, Y. Pan, "Optimization of energy management for UAV-enabled cognitive radio," IEEE Wireless Communications Letters, vol. 9 no. 9, pp. 1505-1508, DOI: 10.1109/LWC.2020.2995226, 2020.
[23] Y. Zeng, R. Zhang, "Energy-efficient UAV communication with trajectory optimization," IEEE Transactions on Wireless Communications, vol. 16 no. 6, pp. 3747-3760, DOI: 10.1109/TWC.2017.2688328, 2017.
[24] S. Boyd, L. Vandenberghe, Convex Optimization, 2013.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2021 Yilong Gu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
With the consolidation of the Internet of Things (IoT), the unmanned aerial vehicle- (UAV-) based IoT has attracted much attention in recent years. In the IoT, cognitive UAV can not only overcome the problem of spectrum scarcity but also improve the communication quality of the edge nodes. However, due to the generation of massive and redundant IoT data, it is difficult to realize the mutual understanding between UAV and ground nodes. At the same time, the performance of the UAV is severely limited by its battery capacity. In order to form an autonomous and energy-efficient IoT system, we investigate semantically driven cognitive UAV networks to maximize the energy efficiency (EE). The semantic device model for cognitive UAV-assisted IoT communication is constructed. And the sensing time, the flight speed of UAV, and the coverage range of UAV communication are jointly optimized to maximize the EE. Then, an efficient alternative algorithm is proposed to solve the optimization problem. Finally, we provide computer simulations to validate the proposed algorithm. The performance of the joint optimization scheme based on the proposed algorithm is compared to some benchmark schemes. And the simulation results show that the proposed scheme can obtain the optimal system parameters and can significantly improve the EE.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer