Full text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rhenium disulfide (ReS2), known in nature as the mineral rheniite, is a very interesting compound owing to its remarkable fundamental properties and great potential to develop novel device applications. Here we perform density functional theory (DFT) calculations to investigate the structural properties and compression behavior of this compound and also of the (Re,Mo)S2 solid solution as a function of Re/Mo content. Our theoretical analysis is complemented with high-pressure X-ray diffraction (XRD) measurements, which have allowed us to reevaluate the phase transition pressure and equation of state of 1T-ReS2. We have observed the 1T-to-1T’ phase transition at pressures as low as ~2 GPa, and we have obtained an experimental bulk modulus, B0, equal to 46(2) GPa. This value is in good agreement with PBE+D3 calculations, thus confirming the ability of this functional to model the compression behavior of layered transition metal dichalcogenides, provided that van der Waals corrections are taken into account. Our experimental data and analysis confirm the important role played by van der Waals effects in the high-pressure properties of 1T-ReS2.

Details

Title
Structural and High-Pressure Properties of Rheniite (ReS2) and (Re,Mo)S2
First page
207
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2491757944
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.