Full text

Turn on search term navigation

© 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pluvial floods in urban areas are caused by local, fast storm events with very high rainfall rates, which lead to inundation of streets and buildings before the storm water reaches a watercourse. An increase in frequency and intensity of heavy rainfall events and an ongoing urbanization may further increase the risk of pluvial flooding in many urban areas. Currently, warnings for pluvial floods are mostly limited to information on rainfall intensities and durations over larger areas, which is often not detailed enough to effectively protect people and goods. We present a proof‐of‐concept for an impact‐based forecasting system for pluvial floods. Using a model chain consisting of a rainfall forecast, an inundation, a contaminant transport and a damage model, we are able to provide predictions for the expected rainfall, the inundated areas, spreading of potential contamination and the expected damage to residential buildings. We use a neural network‐based inundation model, which significantly reduces the computation time of the model chain. To demonstrate the feasibility, we perform a hindcast of a recent pluvial flood event in an urban area in Germany. The required spatio‐temporal accuracy of rainfall forecasts is still a major challenge, but our results show that reliable impact‐based warnings can be forecasts are available up to 5 min before the peak of an extreme rainfall event. Based on our results, we discuss how the outputs of the impact‐based forecast could be used to disseminate impact‐based early warnings.

Details

Title
Impact‐Based Forecasting for Pluvial Floods
Author
Rözer, V 1   VIAFID ORCID Logo  ; Peche, A 2 ; Berkhahn, S 2 ; Feng, Y 3 ; Fuchs, L 4 ; Graf, T 2 ; Haberlandt, U 5   VIAFID ORCID Logo  ; Kreibich, H 6   VIAFID ORCID Logo  ; Sämann, R 2 ; Sester, M 3 ; Shehu, B 5 ; Wahl, J 4 ; Neuweiler, I 2 

 Grantham Research Institute, London School of Economics and Political Science, London, UK; Section Hydrology, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany 
 Institute of Fluid Mechanics and Environmental Physics in Civil Engineering, Leibniz Universität Hannover, Hannover, Germany 
 Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Hannover, Germany 
 Institute for Technical and Scientific Hydrology (itwh) GmbH, Hannover, Germany 
 Institute of Hydrology and Water Resources Management, Leibniz Universität Hannover, Hannover, Germany 
 Section Hydrology, Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany 
Section
Research Article
Publication year
2021
Publication date
Feb 2021
Publisher
John Wiley & Sons, Inc.
e-ISSN
23284277
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2492732919
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.