Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the main set of future climate projections, based on concentration-driven simulations, within the Coupled Model Intercomparison Project phase 6 (CMIP6). This paper presents a range of its outcomes by synthesizing results from the participating global coupled Earth system models. We limit our scope to the analysis of strictly geophysical outcomes: mainly global averages and spatial patterns of change for surface air temperature and precipitation. We also compare CMIP6 projections to CMIP5 results, especially for those scenarios that were designed to provide continuity across the CMIP phases, at the same time highlighting important differences in forcing composition, as well as in results. The range of future temperature and precipitation changes by the end of the century (2081–2100) encompassing the Tier 1 experiments based on the Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and SSP1-1.9 spans a larger range of outcomes compared to CMIP5, due to higher warming (by close to 1.5 C) reached at the upper end of the 5 %–95 % envelope of the highest scenario (SSP5-8.5). This is due to both the wider range of radiative forcing that the new scenarios cover and the higher climate sensitivities in some of the new models compared to their CMIP5 predecessors. Spatial patterns of change for temperature and precipitation averaged over models and scenarios have familiar features, and an analysis of their variations confirms model structural differences to be the dominant source of uncertainty. Models also differ with respect to the size and evolution of internal variability as measured by individual models' initial condition ensemble spreads, according to a set of initial condition ensemble simulations available under SSP3-7.0. These experiments suggest a tendency for internal variability to decrease along the course of the century in this scenario, a result that will benefit from further analysis over a larger set of models. Benefits of mitigation, all else being equal in terms of societal drivers, appear clearly when comparing scenarios developed under the same SSP but to which different degrees of mitigation have been applied. It is also found that a mild overshoot in temperature of a few decades around mid-century, as represented in SSP5-3.4OS, does not affect the end outcome of temperature and precipitation changes by 2100, which return to the same levels as those reached by the gradually increasing SSP4-3.4 (not erasing the possibility, however, that other aspects of the system may not be as easily reversible). Central estimates of the time at which the ensemble means of the different scenarios reach a given warming level might be biased by the inclusion of models that have shown faster warming in the historical period than the observed. Those estimates show all scenarios reaching 1.5 C of warming compared to the 1850–1900 baseline in the second half of the current decade, with the time span between slow and fast warming covering between 20 and 27 years from present. The warming level of 2 C of warming is reached as early as 2039 by the ensemble mean under SSP5-8.5 but as late as the mid-2060s under SSP1-2.6. The highest warming level considered (5 C) is reached by the ensemble mean only under SSP5-8.5 and not until the mid-2090s.

Details

Title
Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6
Author
Tebaldi, Claudia 1   VIAFID ORCID Logo  ; Debeire, Kevin 2   VIAFID ORCID Logo  ; Eyring, Veronika 3   VIAFID ORCID Logo  ; Fischer, Erich 4   VIAFID ORCID Logo  ; Fyfe, John 5 ; Friedlingstein, Pierre 6   VIAFID ORCID Logo  ; Knutti, Reto 4   VIAFID ORCID Logo  ; Lowe, Jason 7 ; O'Neill, Brian 8 ; Sanderson, Benjamin 9   VIAFID ORCID Logo  ; Detlef van Vuuren 10 ; Riahi, Keywan 11   VIAFID ORCID Logo  ; Meinshausen, Malte 12   VIAFID ORCID Logo  ; Nicholls, Zebedee 12   VIAFID ORCID Logo  ; Tokarska, Katarzyna B 4   VIAFID ORCID Logo  ; Hurtt, George 13   VIAFID ORCID Logo  ; Kriegler, Elmar 14 ; Lamarque, Jean-Francois 15   VIAFID ORCID Logo  ; Meehl, Gerald 15 ; Moss, Richard 1 ; Bauer, Susanne E 16   VIAFID ORCID Logo  ; Boucher, Olivier 17 ; Brovkin, Victor 18   VIAFID ORCID Logo  ; Young-Hwa, Byun 19   VIAFID ORCID Logo  ; Dix, Martin 20 ; Gualdi, Silvio 21   VIAFID ORCID Logo  ; Guo, Huan 22   VIAFID ORCID Logo  ; John, Jasmin G 22   VIAFID ORCID Logo  ; Kharin, Slava 5   VIAFID ORCID Logo  ; Kim, YoungHo 23 ; Koshiro, Tsuyoshi 24   VIAFID ORCID Logo  ; Ma, Libin 25 ; Olivié, Dirk 26 ; Panickal, Swapna 27   VIAFID ORCID Logo  ; Qiao, Fangli 28 ; Xinyao Rong 29 ; Rosenbloom, Nan 15   VIAFID ORCID Logo  ; Schupfner, Martin 30 ; Séférian, Roland 31   VIAFID ORCID Logo  ; Sellar, Alistair 32   VIAFID ORCID Logo  ; Semmler, Tido 33   VIAFID ORCID Logo  ; Shi, Xiaoying 34   VIAFID ORCID Logo  ; Song, Zhenya 28   VIAFID ORCID Logo  ; Steger, Christian 35   VIAFID ORCID Logo  ; Stouffer, Ronald 36 ; Swart, Neil 5   VIAFID ORCID Logo  ; Tachiiri, Kaoru 37 ; Tang, Qi 38   VIAFID ORCID Logo  ; Tatebe, Hiroaki 37   VIAFID ORCID Logo  ; Voldoire, Aurore 31   VIAFID ORCID Logo  ; Volodin, Evgeny 39 ; Wyser, Klaus 40   VIAFID ORCID Logo  ; Xiaoge Xin 41 ; Yang, Shuting 42   VIAFID ORCID Logo  ; Yu, Yongqiang 43   VIAFID ORCID Logo  ; Ziehn, Tilo 20   VIAFID ORCID Logo 

 Joint Global Change Research Institute (JGCRI), Pacific Northwest National Laboratory, College Park, MD, USA 
 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany; Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Datenwissenschaften, Jena, Germany 
 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany; Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany 
 ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland 
 Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, Canada 
 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK; LMD/IPSL, ENS, PSL Université, Ècole Polytechnique, Institut Polytechnique de Paris, Sorbonne Université, CNRS, Paris, France 
 Met Office Hadley Center, Exeter, UK; Priestley International Center for Climate, School of Earth and Environment, University of Leeds, Leeds, UK 
 Josef Korbel School of International Studies, University of Denver, Denver, CO, USA; currently at: Joint Global Change Research Institute (JGCRI), Pacific Northwest National Laboratory, College Park, MD, USA 
 CNRS/Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France 
10  PBL Netherlands Environmental Assessment Agency and Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands 
11  International Institute for Applied Systems Analysis, Laxenburg, Austria 
12  Climate & Energy College, School of Earth Sciences, University of Melbourne, Melbourne, Australia 
13  Department of Geographical Sciences, University of Maryland, College Park, MD, USA 
14  Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany 
15  Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA 
16  NASA Goddard Institute for Space Studies, New York, NY, USA 
17  Institut Pierre-Simon Laplace, Sorbonne Université/CNRS, Paris, France 
18  Max Planck Institute for Meteorology, Hamburg, Germany; also at: Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany 
19  National Institute of Meteorological Sciences/Korea Meteorological Administration, Seogwipo, South Korea 
20  CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia 
21  Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy 
22  NOAA/OAR/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA 
23  Ocean Circulation & Climate Change Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea; also at: Department of Oceanography, Pukyong National University, Busan, South Korea 
24  Meteorological Research Institute, Tsukuba, Japan 
25  Earth System Modeling Center, Nanjing University of Information Science and Technology, Jiangsu, China 
26  Norwegian Meteorological Institute, Oslo, Norway 
27  Indian Institute of Tropical Meteorology, Pune, India 
28  First Institute of Oceanography (FIO), Ministry of Natural Resources (MNR), Qingdao, China 
29  State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China 
30  Deutsches Klimarechenzentrum, Hamburg, Germany 
31  CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France 
32  Met Office Hadley Center, Exeter, UK 
33  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 
34  Oak Ridge National Laboratory, Oak Ridge, TN, USA 
35  Deutscher Wetterdienst, Offenbach, Germany 
36  University of Arizona, Tucson, AZ, USA 
37  Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan 
38  Lawrence Livermore National Laboratory, Livermore, CA, USA 
39  Institute of Numerical Mathematics, Moscow, Russian Federation 
40  Swedish Meteorological and Hydrological Institute, Norrköping, Sweden 
41  Beijing Climate Center, China Meteorological Administration, Beijing, China 
42  Danish Meteorological Institute, Copenhagen, Denmark 
43  LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 
Pages
253-293
Publication year
2021
Publication date
2021
Publisher
Copernicus GmbH
ISSN
21904979
e-ISSN
21904987
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2494074551
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.