Full text

Turn on search term navigation

© 2021 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Despite considerable tolerance to salt and alkali stress, Leymus chinensis populations on the southwestern Songnen Plain in northern China are threatened by increasing soil salinity and alkalinity. To explore the species’ responses to saline-alkali stress, we grew it in substrates with varying concentrations of nitrogen (N) and phosphorus (P) while applying varying levels of saline-alkali stress (increasing in 14-, 17- or 23 -day intervals). We measured the plants’ contents of N and P, and the N:P ratio, and calculated their homeostasis indices (HN, HP and HN:P) under each nutrient and saline-alkali stress treatment. The N content was found to be more sensitive to saline-alkali stress than the P content. The N and P contents were highest and the N:P ratio was stable at pH 8.4. At both pH 8.1 and 8.4, HN:P> HN > HP, but the indices and their relations differed at other pH values. Exposure to saline-alkali stress for the 14-day incremental interval had weaker effects on the plants. Rapid changes in salinity-alkalinity weakened both the positive effects of the weakly alkaline conditions (pH 7.5–8.4) and the negative effects of more strongly alkaline conditions (pH 8.7 or 9.3) on L. chinensis. When L. chinensis plants lack N, applying N fertilizer will be extremely efficient. The optimal concentrations of N and P appeared to be 16 and 1.2 mmol/L, respectively. When the L. chinensis plants were N- and P-limited, the specific growth rate correlated positively with N:P, when limited by N it correlated positively with the environmental N concentration, and when limited by P it was weakly positively correlated with the environmental P concentration.

Details

Title
Homeostatic responses and growth of Leymus chinensis under incrementally increasing saline-alkali stress
Author
Li, Shujie; Huang, Yujin; Li, Yuefen
Publication year
2021
Publication date
Mar 1, 2021
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2494704375
Copyright
© 2021 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.