Full text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, grating-structured triboelectric nanogenerators (TENG) operating in freestanding mode have been the subject of intensive research. However, standard TENGs based on interdigital electrode structures are unable to realize real-time sensing of the direction of the freestanding electrode movement. Here, a newly designed TENG, consisting of one group of grating freestanding electrodes and three groups of interdigitated induction electrodes with the identical period, has been demonstrated as a self-powered vector angle/displacement sensor (SPVS), capable of distinguishing the real-time direction of the freestanding electrode displacement. Thanks to the unique coupling effect between triboelectrification and electrostatic induction, periodic alternating voltage signals are generated in response to the rotation/sliding movement of the top freestanding electrodes on the bottom electrodes. The output peak-to-peak voltage of the SPVS can reach as high as 300 V at the rotation rate of 48 rpm and at the sliding velocity of 0.1 m/s, respectively. The resolution of the sensor reaches 8°/5 mm and can be further enhanced by decreasing the width of the electrodes. This present work not only demonstrates a novel method for angle/displacement detection but also greatly expands the applicability of TENG as self-powered vector sensors.

Details

Title
A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator
First page
231
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2495233200
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.