It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Field bio-remediation techniques (FBRT) can be a low cost method to avoid the removal of top layers of soil which are rich in organic matter and bio diversity. The use of native microorganisms in FBRT is preferable because non-indigenous species can transfer their genetic material to the environment with negative impacts on the local ecological equilibrium. Petroleum Produced Water (PPW) is an important pollutant source in onshore production areas. However, due to high sodium concentrations in PPW and the occurrence of organic matter in dissolved and dispersed forms, obtaining pollutant transport parameters may be a difficult task. Results of column tests performed using a natural soil permeated by PPW are presented. All the samples presented a permeability decrease over time and the total hydrocarbon petroleum (TPH) breakthrough curves presented evidence of biological decay. Soil samples underwent biological characterization after tests (Metagenomic analyses and cultural media tests). Curves were modelled in an incremental way using a non-constant decay rate to better simulate the growing process of the microorganisms and consider the occurrence of varying velocity/permeability. Biological characterization results indicate the native organisms that are potentially more able to degrade PPW, including four bacteria (Bacillus and Lysinibacillus genus) and two fungi species (Malassezia and Talaromyces genus) that have not previously been mentioned in the consulted literature. The obtained results contribute to the development of more sustainable FBRTs focusing on native microorganisms, already adapted to the local environmental conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Federal University of Bahia, Department of Materials Science and Technology, Salvador, Brazil (GRID:grid.8399.b) (ISNI:0000 0004 0372 8259)
2 Federal University of Bahia, Geo-Science Institute, Salvador, Brazil (GRID:grid.8399.b) (ISNI:0000 0004 0372 8259)