It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Distributed acoustic sensing (DAS) is a new method that measures the strain change along a fiber-optic cable and has emerged as a promising geophysical application across a wide range of research and monitoring. Here we present the results of DAS observations from a submarine cable offshore Cape Muroto, Nankai subduction zone, western Japan. The observed signal amplitude varies widely among the DAS channels, even over short distances of only ~ 100 m, which is likely attributed to the differences in cable-seafloor coupling due to complex bathymetry along the cable route. Nevertheless, the noise levels at the well-coupled channels of DAS are almost comparable to those observed at nearby permanent ocean-bottom seismometers, suggesting that the cable has the ability to detect nearby micro earthquakes and even tectonic tremors. Many earthquakes were observed during the 5-day observation period, with the minimum and maximum detectable events being a local M1.1 event 30–50 km from the cable and a teleseismic Mw7.7 event that occurred in Cuba, respectively. Temperature appears to exert a greater control on the DAS signal than real strain in the quasi-static, sub-seismic range, where we can regard our DAS record as distributed temperature sensing (DTS) record, and detected many rapid temperature change events migrating along the cable: a small number of large migration events (up to 10 km in 6 h) associated with rapid temperature decreases, and many small-scale events (both rising and falling temperatures). These events may reflect oceanic internal surface waves and deep-ocean water mixing processes that are the result of ocean current–tidal interactions along an irregular seafloor boundary.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 The University of Tokyo, Department of Earth and Planetary Science, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X)
2 Japan Agency for Marine Earth Science and Technology, Yokosuka, Japan (GRID:grid.410588.0) (ISNI:0000 0001 2191 0132)