It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An unsteady convection-radiation interaction flow of power-law non-Newtonian nanofluids using the time-fractional derivative is examined. The flow domain is an enclosure that has a free surface located at the top boundaries. Also, the geometry is filled by aluminum foam as a porous medium and the overall thermal conductivity as well as the heat capacity are approximated using a linear combination of the properties of the fluid and porous phases. Additionally, the dynamic viscosity and thermal conductivity of the mixture are expressed as a function of velocity gradients with a fractional power. Marangoni influences are imposed to the top free surface while the bottom boundaries are partially heated. Steps of the solution methodology are consisting of approximation of the time fractional derivatives using the conformable definition, using the finite differences method to discretize the governing system and implementation the resulting algebraic system. The main outcomes reveled that as the fractional order approaches to one, the maximum values of the stream function, the bulk-averaged temperature and cup-mixing temperature are reduces, regardless values of the time.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Qassim University, Department of Mathematics, College of Science and Arts, Al Mithnab, Saudi Arabia (GRID:grid.412602.3) (ISNI:0000 0000 9421 8094)
2 Jouf University, Department of Mathematics, Faculty of Science and Arts, Qurayyat, Saudi Arabia (GRID:grid.440748.b) (ISNI:0000 0004 1756 6705)
3 King Khalid University, Department of Mathematics, Faculty of Science, Abha, Saudi Arabia (GRID:grid.412144.6) (ISNI:0000 0004 1790 7100)