It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Twist-engineering of the electronic structure in van-der-Waals layered materials relies predominantly on band hybridization between layers. Band-edge states in transition-metal-dichalcogenide semiconductors are localized around the metal atoms at the center of the three-atom layer and are therefore not particularly susceptible to twisting. Here, we report that high-lying excitons in bilayer WSe2 can be tuned over 235 meV by twisting, with a twist-angle susceptibility of 8.1 meV/°, an order of magnitude larger than that of the band-edge A-exciton. This tunability arises because the electronic states associated with upper conduction bands delocalize into the chalcogenide atoms. The effect gives control over excitonic quantum interference, revealed in selective activation and deactivation of electromagnetically induced transparency (EIT) in second-harmonic generation. Such a degree of freedom does not exist in conventional dilute atomic-gas systems, where EIT was originally established, and allows us to shape the frequency dependence, i.e., the dispersion, of the optical nonlinearity.
Here, the authors report on the large twist-angle susceptibility of excitons involving upper conduction bands in transition metal dichalcogenide bilayers. These high-lying excitons couple with band-edge excitons, and give rise to nonlinear quantum-optical processes that become tuneable by twisting.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 University of Regensburg, Department of Physics, Regensburg, Germany (GRID:grid.7727.5) (ISNI:0000 0001 2190 5763)
2 University of Cambridge, TCM Group, Cavendish Laboratory, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934)
3 University of Cambridge, TCM Group, Cavendish Laboratory, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934); University of Cambridge, Department of Materials Science and Metallurgy, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934)
4 Pavol Jozef Šafárik University, Department of Theoretical Physics and Astrophysics, Košice, Slovakia (GRID:grid.11175.33) (ISNI:0000 0004 0576 0391)