Abstract

Multidimensional fitness landscapes provide insights into the molecular basis of laboratory and natural evolution. To date, such efforts usually focus on limited protein families and a single enzyme trait, with little concern about the relationship between protein epistasis and conformational dynamics. Here, we report a multiparametric fitness landscape for a cytochrome P450 monooxygenase that was engineered for the regio- and stereoselective hydroxylation of a steroid. We develop a computational program to automatically quantify non-additive effects among all possible mutational pathways, finding pervasive cooperative signs and magnitude epistasis on multiple catalytic traits. By using quantum mechanics and molecular dynamics simulations, we show that these effects are modulated by long-range interactions in loops, helices and β-strands that gate the substrate access channel allowing for optimal catalysis. Our work highlights the importance of conformational dynamics on epistasis in an enzyme involved in secondary metabolism and offers insights for engineering P450s.

Connecting conformational dynamics and epistasis has so far been limited to a few proteins and a single fitness trait. Here, the authors provide evidence of positive epistasis on multiple catalytic traits in the evolution and dynamics of engineered cytochrome P450 monooxygenase, offering insights for in silico protein design.

Details

Title
Pervasive cooperative mutational effects on multiple catalytic enzyme traits emerge via long-range conformational dynamics
Author
Acevedo-Rocha, Carlos G 1 ; Li Aitao 2   VIAFID ORCID Logo  ; D’Amore Lorenzo 3   VIAFID ORCID Logo  ; Hoebenreich Sabrina 4   VIAFID ORCID Logo  ; Sanchis Joaquin 5   VIAFID ORCID Logo  ; Lubrano, Paul 6 ; Ferla, Matteo P 7 ; Garcia-Borràs, Marc 3   VIAFID ORCID Logo  ; Osuna Sílvia 8   VIAFID ORCID Logo  ; Reetz, Manfred T 9 

 Biosyntia ApS, Copenhagen, Denmark 
 Hubei University, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Wuhan, P. R. China (GRID:grid.34418.3a) (ISNI:0000 0001 0727 9022) 
 Universitat de Girona, Institut de Química Computacional i Catàlisi and Departament de Química, Girona, Spain (GRID:grid.5319.e) (ISNI:0000 0001 2179 7512) 
 Philipps-University Marburg, Department of Chemistry, Marburg, Germany (GRID:grid.10253.35) (ISNI:0000 0004 1936 9756) 
 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia (GRID:grid.1002.3) (ISNI:0000 0004 1936 7857) 
 Biosyntia ApS, Copenhagen, Denmark (GRID:grid.1002.3); Eberhard Karls Universität Tübingen, Bacterial Metabolomics Group, Tübingen, Germany (GRID:grid.10392.39) (ISNI:0000 0001 2190 1447) 
 University of Oxford, Wellcome Centre for Human Genetics, Oxford, UK (GRID:grid.4991.5) (ISNI:0000 0004 1936 8948) 
 Universitat de Girona, Institut de Química Computacional i Catàlisi and Departament de Química, Girona, Spain (GRID:grid.5319.e) (ISNI:0000 0001 2179 7512); ICREA, Barcelona, Spain (GRID:grid.425902.8) (ISNI:0000 0000 9601 989X) 
 Philipps-University Marburg, Department of Chemistry, Marburg, Germany (GRID:grid.10253.35) (ISNI:0000 0004 1936 9756); Max-Planck-Institut für Kohlenforschung, Department of Biocatalysis, Mülheim an der Ruhr, Germany (GRID:grid.419607.d) (ISNI:0000 0001 2096 9941); Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, P. R. China (GRID:grid.9227.e) (ISNI:0000000119573309) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2500686647
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.