Full text

Turn on search term navigation

Copyright © 2021 Ming Song et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Background. Ganoderma lucidum has certain components with known pharmacological effects, including strengthening immunity and anti-inflammatory activity. G. lucidum seeds inherit all its biological characteristics. G. lucidum spore polysaccharide (GLSP) is the main active ingredient to enhance these effects. However, its specific biological mechanisms are not exact. Our research is aimed at revealing the specific biological mechanism of GLSP to enhance immunity and inhibit the growth of H22 hepatocellular carcinoma cells. Methods. We extracted primary macrophages (Mø) from BALB/c mice and treated them with GLSP (800 μg/mL, 400 μg/mL, and 200 μg/mL) to observe its effects on macrophage polarization and cytokine secretion. We used GLSP and GLSP-intervened macrophage supernatant to treat H22 tumor cells and observed their effects using MTT and flow cytometry. Moreover, real-time fluorescent quantitative PCR and western blotting were used to observe the effect of GLSP-intervened macrophage supernatant on the PI3K/AKT and mitochondrial apoptosis pathways. Results. In this study, GLSP promoted the polarization of primary macrophages to M1 type and the upregulation of some cytokines such as TNF-α, IL-1β, IL-6, and TGF-β1. The MTT assay revealed that GLSP+Mø at 400 μg/mL and 800 μg/mL significantly inhibited H22 cell proliferation in a dose-dependent manner. Flow cytometry analysis revealed that GLSP+Mø induced apoptosis and cell cycle arrest at the G2/M phase, associated with the expression of critical genes and proteins (PI3K, p-AKT, BCL-2, BAX, and caspase-9) that regulate the PI3K/AKT pathway and apoptosis. GLSP reshapes the tumor microenvironment by activating macrophages, promotes the polarization of primary macrophages to M1 type, and promotes the secretion of various inflammatory factors and cytokines. Conclusion. Therefore, as a natural nutrient, GLSP is a potential agent in hepatocellular carcinoma cell treatment and induction of apoptosis.

Details

Title
Ganoderma lucidum Spore Polysaccharide Inhibits the Growth of Hepatocellular Carcinoma Cells by Altering Macrophage Polarity and Induction of Apoptosis
Author
Song, Ming 1   VIAFID ORCID Logo  ; Zhen-hao, Li 2 ; Hong-shun Gu 3 ; Ru-ying Tang 4 ; Zhang, Rui 1 ; Ying-li, Zhu 4 ; Jin-lian, Liu 1 ; Zhang, Jian-jun 1   VIAFID ORCID Logo  ; Lin-yuan, Wang 4   VIAFID ORCID Logo 

 School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China 
 Zhejiang Shouxiangu Institute of Rare Medicine Plant, Wuyi, 321200, China 
 Beijing Cairui Medicine Technology Institute, Beijing 100094, China 
 School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China 
Editor
Kai Wang
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
23148861
e-ISSN
23147156
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2501176194
Copyright
Copyright © 2021 Ming Song et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/