It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An analysis of the field dependence of the pinning force in different, high density sintered samples of MgB2 is presented. The samples were chosen to be representative for pure MgB2, MgB2 with additives, and partially oriented massive samples. In some cases, the curves of pinning force versus magnetic field of the selected samples present peculiar profiles and application of the typical scaling procedures fails. Based on the percolation model, we show that most features of the field dependence of the critical force that generate dissipation comply with the Dew-Hughes scaling law predictions within the grain boundary pinning mechanism if a connecting factor related to the superconducting connection of the grains is used. The field dependence of the connecting function, which is dependent on the superconducting anisotropy, is the main factor that controls the boundary between dissipative and non-dissipative current transport in high magnetic field. Experimental data indicate that the connecting function is also dependent on the particular properties (e.g., the presence of slightly non-stoichiometric phases, defects, homogeneity, and others) of each sample and it has the form of a single or double peaked function in all investigated samples.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Institute of Materials Physics, Magurele, Romania (GRID:grid.443870.c) (ISNI:0000 0004 0542 4064)