Abstract

Cupric oxide (CuO), as a transition metal oxide (TMO) semiconductor, has attracted tremendous attention for various applications. In the present work, we synthesize the CuO nanosheets modified by TiO2 nanoparticles via a facile, non-toxic two-step method. Subsequently, the morphology and the structures of CuO and TiO2/CuO nanocomposites are investigated. By utilizing the common Z-scan technology, broadband nonlinear optical (NLO) properties of the as-prepared CuO nanosheets and TiO2/CuO nanocomposites are demonstrated, elucidating the enhancement on the NLO response via the TiO2 dopant, which is attributed to the more oxygen vacancies and the formed p-n junctions. Furthermore, CuO nanosheets and TiO2/CuO nanocomposites are implemented to the passively Q-switched bulk lasers operating in the near-infrared (NIR) region, generating broadband ultrastable pulses. Ultimately, TiO2/CuO nanocomposites were intergrated in a passive mode-locking bulk laser for the first time, achieving stable mode-locked pulses and verifying its ultrafast optical response potential. Our results illustrate the tremendous prospects of the CuO nanosheets modified by oxygen vacancy engineering as a broadband NLO material in ultrafast photonics field.

Details

Title
Enhanced broadband nonlinear optical response of TiO2/CuO nanosheets via oxygen vacancy engineering
Author
Li, Dong; Chu, Hongwei  VIAFID ORCID Logo  ; Wang, Xiao; Li, Ying; Zhao, Shengzhi; Li, Dechun  VIAFID ORCID Logo 
Pages
1541-1551
Publication year
2021
Publication date
2021
Publisher
Walter de Gruyter GmbH
ISSN
21928606
e-ISSN
21928614
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2501924914
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.