It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Prevention of hyperuricaemia (HU) is critical to the prevention of gout. Understanding causal relationships and relative contributions of various risk factors to hyperuricemia is therefore important in the prevention of gout. Here, we use attributable fraction to compare the relative contribution of genetic, dietary, urate-lowering therapy (ULT) and other exposures to HU. We use Mendelian randomisation to test for the causality of diet in urate levels.
Methods
Four European-ancestry sample sets, three from the general population (n = 419,060) and one of people with gout (n = 6781) were derived from the Database of Genotypes and Phenotypes (ARIC, FHS, CARDIA, CHS) and UK Biobank. Dichotomised exposures to diet, genetic risk variants, BMI, alcohol, diuretic treatment, sex and age were used to calculate adjusted population and average attributable fractions (PAF/AAF) for HU (≥0.42 mmol/L [≥7 mg/dL]). Exposure to ULT was also assessed in the gout cohort. Two sample Mendelian randomisation was done in the UK Biobank using dietary pattern-associated genetic variants as exposure and serum urate levels as outcome.
Results
Adherence to dietary recommendations, BMI (< 25 kg/m2), and absence of the SLC2A9 rs12498742 urate-raising allele produced PAFs for HU of 20 to 24%, 59 to 69%, and 57 to 64%, respectively, in the three non-gout cohorts. In the gout cohort, diet, BMI, SLC2A9 rs12498742 and ULT PAFs for HU were 12%, 49%, 48%, and 63%, respectively. Mendelian randomisation demonstrated weak causal effects of four dietary habits on serum urate levels (e.g. preferentially drinking skim milk increased urate, β = 0.047 mmol/L, P = 3.78 × 10−8). These effects were mediated by BMI, and they were not significant (P ≥ 0.06) in multivariable models assessing the BMI-independent effect of diet on urate.
Conclusions
Diet has a relatively minor role in determining serum urate levels and HU. In gout, the use of ULT was the largest attributable fraction tested for HU.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer