Abstract
[...]the multivariate regression analysis was used for the identification of risk factors of AKI. If an important risk factor is missed, the multivariate adjustment for the odd ratio of the measured outcome can be biased and even a spurious association between the intervention and measured outcome may be obtained. [...]we argue that not taking emergent PCI into the model would have tampered with the inferences of multivariate regression analysis for risk factors of AKI and their adjusted odds ratios. [5] Finally, an important ignore by the authors was that the statistical validation of their model was not performed. Because the predictive model was developed by multivariate regression analysis using demographic, clinical, and other variables to generate outcome estimates, overfitting is a common issue, especially when the number of predictors and interaction terms are large, and the number of events is small.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer