It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The Black Sea is the largest brackish water body in the world, although it is connected to the Mediterranean Sea and presents an upper water layer similar to some regions of the former, albeit with lower salinity and temperature. Despite its well-known hydrology and physicochemical features, this enormous water mass remains poorly studied at the microbial genomics level.
Results
We have sampled its different water masses and analyzed the microbiome by shotgun and genome-resolved metagenomics, generating a large number of metagenome-assembled genomes (MAGs) from them. We found various similarities with previously described Black Sea metagenomic datasets, that show remarkable stability in its microbiome. Our datasets are also comparable to other marine anoxic water columns like the Cariaco Basin. The oxic zone resembles to standard marine (e.g. Mediterranean) photic zones, with Cyanobacteria (Synechococcus but a conspicuously absent Prochlorococcus), and photoheterotrophs domination (largely again with marine relatives). The chemocline presents very different characteristics from the oxic surface with many examples of chemolithotrophic metabolism (Thioglobus) and facultatively anaerobic microbes. The euxinic anaerobic zone presents, as expected, features in common with the bottom of meromictic lakes with a massive dominance of sulfate reduction as energy-generating metabolism, a few (but detectable) methanogenesis marker genes, and a large number of “dark matter” streamlined genomes of largely unpredictable ecology.
Conclusions
The Black Sea oxic zone presents many similarities to the global ocean while the redoxcline and euxinic water masses have similarities to other similar aquatic environments of marine (Cariaco Basin or other Black Sea regions) or freshwater (meromictic monimolimnion strata) origin. The MAG collection represents very well the different types of metabolisms expected in this kind of environment. We are adding critical information about this unique and important ecosystem and its microbiome.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer