It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Owing to high genetic diversities of tumor cells and low response rate of standard chemotherapy, patients with triple negative breast cancer (TNBC) have short progression-free survivals and poor outcomes, which need to explore an effective approach to improve therapeutic efficacy.
Methods
Novel gadolinium doped carbon dots (Gd@CDs) have been designed and prepared through hydrothermal method with 3,4-dihydroxyhydrocinnamic acid, 2,2′-(ethylenedioxy)bis(ethylamine) and gadolinium chloride. The synthesized nanostructures were characterized. Taking advantage of good biocompatibility of Gd@CDs, a nanoplatform based on Gd@CDs has been developed to co-deliver chemotherapy drug doxorubicin hydrochloride (Dox) and a near-infrared (NIR) photothermal agent, IR825 for magnetic resonance imaging (MRI) guided photothermal chemotherapy for TNBC.
Results
The as-synthesized Dox@IR825@Gd@CDs displayed favorable MRI ability in vivo. Upon NIR laser irradiation, Dox@IR825@Gd@CDs could convert the NIR light to heat and efficiently inhibit tumor growth through photothermal chemotherapy in vitro and in vivo. Additionally, the impact of photothermal chemotherapy on the murine motor coordination was assessed by rotarod test. Dox@IR825@Gd@CDs presented low toxicity and high photothermal chemotherapy efficiency.
Conclusion
A noble theranostic nanoplatform (Dox@IR825@Gd@CDs) was developed that could be tailored to achieve loading of Dox and IR825, intracellular delivery, favorable MRI, excellent combination therapy with photothermal therapy and chemotherapy to enhance therapeutic effect against TNBC cells. This study will provide a promising strategy for the development of Gd-based nanomaterials for MRI and combinational therapy for TNBC.
Graphic abstract
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer