It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
RNA-binding proteins (RBPs) play crucial and multifaceted roles in post-transcriptional regulation. While RBPs dysregulation is involved in tumorigenesis and progression, little is known about the role of RBPs in bladder cancer (BLCA) prognosis. This study aimed to establish a prognostic model based on the prognosis-related RBPs to predict the survival of BLCA patients.
Methods
We downloaded BLCA RNA sequence data from The Cancer Genome Atlas (TCGA) database and identified RBPs differentially expressed between tumour and normal tissues. Then, functional enrichment analysis of these differentially expressed RBPs was conducted. Independent prognosis-associated RBPs were identified by univariable and multivariable Cox regression analyses to construct a risk score model. Subsequently, Kaplan–Meier and receiver operating characteristic curves were plotted to assess the performance of this prognostic model. Finally, a nomogram was established followed by the validation of its prognostic value and expression of the hub RBPs.
Results
The 385 differentially expressed RBPs were identified included 218 and 167 upregulated and downregulated RBPs, respectively. The eight independent prognosis-associated RBPs (EFTUD2, GEMIN7, OAS1, APOBEC3H, TRIM71, DARS2, YTHDC1, and RBMS3) were then used to construct a prognostic prediction model. An in-depth analysis showed lower overall survival (OS) in patients in the high-risk subgroup compared to that in patients in the low-risk subgroup according to the prognostic model. The area under the curve of the time-dependent receiver operator characteristic (ROC) curve were 0.795 and 0.669 for the TCGA training and test datasets, respectively, showing a moderate predictive discrimination of the prognostic model. A nomogram was established, which showed a favourable predictive value for the prognosis of BLCA.
Conclusions
We developed and validated the performance of a prognostic model for BLCA that might facilitate the development of new biomarkers for the prognostic assessment of BLCA patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer