It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Cervical cancer is a gynecologic cancer type that develops in the cervix, accounting for 8% mortality of all female cancer patients. Infection with specific human papillomavirus (HPV) types is considered the most severe risk factor for cervical cancer. In the context of our socioeconomic conditions, an increasing burden of this disease and high mortality rate prevail in Bangladesh. Although several researches related to the epidemiology, HPV vaccination, and treatment modalities were conducted, researches on the mutation profiles of marker genes in cervical cancer in Bangladesh remain unexplored.
Methods
In this study, five different genomic regions within the top three most frequently mutated genes (EGFR, KRAS and PIK3CA) in COSMIC database with a key role in the development of cervical cancers were selected to study the mutation frequency in Bangladeshi patients. In silico analysis was done in two steps: nucleotide sequence analysis and its corresponding amino acid analysis.
Results
DNA from 46 cervical cancer tissue samples were extracted and amplified by PCR, using 1 set of primers designed for EGFR and 2 sets of primers designed for two different regions of both PIK3CA and KRAS gene. In total, 39 mutations were found in 26 patient samples. Eleven different mutations (23.91%), twenty-four different mutations (52.17%) and four mutations (8.7%) were found in amplified EGFR, PIK3CA and KRAS gene fragments, respectively; among which 1 (EGFR) was common in seven patient samples and 2 (PIKCA) were found in more than 1 patient. Our study shows that except for KRAS, the frequency of observed mutations in our patients is higher than those reported earlier in other parts of the world. Most of the exonic mutations were found only in the PIK3CA and EGFR genes.
Conclusions
The study can be used as a basis to build a mutation database for cervical cancer in Bangladesh with the possibility of targetable oncogenic mutations. Further explorations are needed to establish future diagnostics, personalized medicine decisions, and other pharmaceutical applications for specific cancer subtypes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer