It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Various studies on multi-valued-logic (MVL) computing, which utilizes more than two logic states, have recently been resumed owing to the demand for greater power saving in the current logic technologies. In particular, unlike old-fashioned researches, extensive efforts have been focused on implementing single devices with multiple threshold voltages via a negative-differential current change phenomenon. In this work, we report a multiple negative-differential-transconductance (NDT) phenomenon, which is achieved through the control of partial gate potential and light power/wavelength in a van-der-Waals (vdW) multi-channel phototransistor. The partial gating formed a controllable potential barrier/well in the vdW channel, enabling control over the collection of carriers and eventually inducing the NDT phenomenon. Especially, the strategy shining lights with different powers/wavelengths facilitated the precise NDT control and the realization of the multiple NDT phenomenon. Finally, the usability of this multiple NDT device as a core device of MVL arithmetic circuits such as MVL inverters/NAND/NOR gates is demonstrated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Sungkyunkwan University, Department of Electrical and Computer Engineering, Suwon, Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)
2 Sungkyunkwan University, SKKU Advanced Institute of Nanotechnology, Suwon, Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)
3 Nanyang Technological University (NTU), School of Electrical and Electronic Engineering, Singapore, Singapore (GRID:grid.59025.3b) (ISNI:0000 0001 2224 0361)
4 Sungkyunkwan University, Department of Electrical and Computer Engineering, Suwon, Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X); Sungkyunkwan University, SKKU Advanced Institute of Nanotechnology, Suwon, Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)