It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The self-assembly of α-synuclein (αS) into intraneuronal inclusion bodies is a key characteristic of Parkinson’s disease. To define the nature of the species giving rise to neuronal damage, we have investigated the mechanism of action of the main αS populations that have been observed to form progressively during fibril growth. The αS fibrils release soluble prefibrillar oligomeric species with cross-β structure and solvent-exposed hydrophobic clusters. αS prefibrillar oligomers are efficient in crossing and permeabilize neuronal membranes, causing cellular insults. Short fibrils are more neurotoxic than long fibrils due to the higher proportion of fibrillar ends, resulting in a rapid release of oligomers. The kinetics of released αS oligomers match the observed kinetics of toxicity in cellular systems. In addition to previous evidence that αS fibrils can spread in different brain areas, our in vitro results reveal that αS fibrils can also release oligomeric species responsible for an immediate dysfunction of the neurons in the vicinity of these species.
The self-assembly of α-synuclein (αS) is a pathological feature of Parkinson’s disease. The αS species responsible for neuronal damage are not well characterized. Here, the authors show that αS fibrils release soluble prefibrillar oligomeric species responsible for neurotoxicity in vitro.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 University of Florence, Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, Florence, Italy (GRID:grid.8404.8) (ISNI:0000 0004 1757 2304)
2 Imperial College London, Department of Life Science, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111); University of Cambridge, Centre for Misfolding Diseases, Department of Chemistry, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934)
3 Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit BIFI-Institute of Physical Chemistry “Rocasolano” (CSIC), University of Zaragoza, Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769)
4 University of Cambridge, Centre for Misfolding Diseases, Department of Chemistry, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934)