Full Text

Turn on search term navigation

© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Use of the selective estrogen receptor modulator Tamoxifen (TAM) is a mainstay to induce conditional expression of Cre recombinase in transgenic laboratory mice. To excise β‐cateninfl/fl in 28‐day‐old male and female Prrx1‐CreER/β‐cateninfl/fl mice (C57BL/6), we utilized TAM at 150 mg/kg; despite β‐catenin knockout in MSC, we found a significant increase in trabecular and cortical bone volume in all genders. Because TAM was similarly anabolic in KO and control mice, we investigated a dose effect on bone formation by treating wild‐type mice (WT C57BL/6, 4 weeks) with TAM (total dose 0, 20, 40, 200 mg/kg via four injections). TAM increased bone in a dose‐dependent manner analyzed by micro–computed tomography (μCT), which showed that, compared to control, 20 mg/kg TAM increased femoral bone volume fraction (bone volume/total volume [BV/TV]) (21.6% ± 1.5% to 33% ± 2.5%; 153%, p < 0.005). With TAM 40 mg/kg and 200 mg/kg, BV/TV increased to 48.1% ± 4.4% (223%, p < 0.0005) and 58% ± 3.8% (269%, p < 0.0001) respectively, compared to control. Osteoblast markers increased with 200 mg/kg TAM: Dlx5 (224%, p < 0.0001), Alp (166%, p < 0.0001), Bglap (223%, p < 0.0001), and Sp7 (228%, p < 0.0001). Osteoclasts per bone surface (Oc#/BS) nearly doubled at the lowest TAM dose (20 mg/kg), but decreased to <20% control with 200 mg/kg TAM. Our data establish that use of TAM at even very low doses to excise a floxed target in postnatal mice has profound effects on trabecular and cortical bone formation. As such, TAM treatment is a major confounder in the interpretation of bone phenotypes in conditional gene knockout mouse models. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

Details

Title
Low‐Dose Tamoxifen Induces Significant Bone Formation in Mice
Author
Xie, Zhihui 1 ; McGrath, Cody 1 ; Sankaran, Jeyantt 1 ; Styner, Maya 1   VIAFID ORCID Logo  ; Sarah Little‐Letsinger 1 ; Dudakovic, Amel 2   VIAFID ORCID Logo  ; van Wijnen, Andre J 2 ; Rubin, Janet 1   VIAFID ORCID Logo  ; Sen, Buer 1   VIAFID ORCID Logo 

 Department of Medicine, University of North Carolina, Chapel Hill, NC, USA 
 Department of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA 
Section
Original Articles
Publication year
2021
Publication date
Mar 2021
Publisher
Oxford University Press
e-ISSN
24734039
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2504505300
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.