It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract
Proteus mirabilis is a leading uropathogen of catheter-associated urinary tract infections (CAUTIs), which are among the most common healthcare-associated infections worldwide. A key factor that contributes to P. mirabilis pathogenesis and persistence during CAUTI is the formation of catheter biofilms, which provide increased resistance to antibiotic treatment and host defense mechanisms. Another factor that is important for bacterial persistence during CAUTI is the ability to resist reactive oxygen species (ROS), such as through the action of the catalase enzyme. Potent catalase activity is one of the defining biochemical characteristics of P. mirabilis, and its single catalase gene (katA) was recently identified as a candidate fitness factor for UTI, CAUTI, and bacteremia. Here we show that disruption of katA results in increased ROS levels, increased sensitivity to peroxide, and decreased biofilm biomass. The biomass defect was due to a decrease in extracellular polymeric substances (EPS) production by the ΔkatA mutant, and specifically due to reduced carbohydrate content. Importantly, the biofilm defect resulted in decreased antibiotic resistance in vitro and a colonization defect during experimental CAUTI. The ΔkatA mutant also exhibited decreased fitness in a bacteremia model, supporting a dual role for catalase in P. mirabilis biofilm development and immune evasion.
Footnotes
* The authors have declared that no conflict of interest exists.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer